Edit count of the user (user_editcount ) | null |
Name of the user account (user_name ) | '208.123.139.114' |
Age of the user account (user_age ) | 0 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*'
] |
Rights that the user has (user_rights ) | [
0 => 'createaccount',
1 => 'read',
2 => 'edit',
3 => 'createtalk',
4 => 'writeapi',
5 => 'viewmyprivateinfo',
6 => 'editmyprivateinfo',
7 => 'editmyoptions',
8 => 'abusefilter-log-detail',
9 => 'urlshortener-create-url',
10 => 'centralauth-merge',
11 => 'abusefilter-view',
12 => 'abusefilter-log',
13 => 'vipsscaler-test'
] |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Whether the user is editing from mobile app (user_app ) | false |
Page ID (page_id ) | 23538713 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Bat' |
Full page title (page_prefixedtitle ) | 'Bat' |
Edit protection level of the page (page_restrictions_edit ) | [] |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'Fama Clamosa',
1 => '64.92.50.174',
2 => 'ClueBot NG',
3 => '82.6.144.228',
4 => 'Lynch44',
5 => '2604:3D09:6A7F:E240:C48C:B42:93EC:7A37',
6 => 'OAbot',
7 => 'Nigel757',
8 => '68.2.78.78',
9 => 'Grassynoel'
] |
Page age in seconds (page_age ) | 707969697 |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '' |
Time since last page edit in seconds (page_last_edit_age ) | 208168 |
Old content model (old_content_model ) | 'wikitext' |
New content model (new_content_model ) | 'wikitext' |
Old page wikitext, before the edit (old_wikitext ) | '{{Short description|Order of flying mammals}}
{{About||the sporting equipment|Baseball bat|and|Cricket bat|and|Table tennis bat|other uses}}
{{Redirect-multi|2|Bats|Chiroptera}}{{Use dmy dates|date=November 2020}}
{{Featured article}}
{{Use British English|date=November 2017}}
{{Automatic taxobox
| name = Bat
| fossil_range = {{Fossil range|52|0|[[Eocene]]–[[Holocene|Present]]}}
| image = <imagemap>
File:Wikipedia-Bats-001-v01.jpg|300px
rect 0 0 820 510 [[Common vampire bat]]
rect 0 510 820 950 [[Greater horseshoe bat]]
rect 0 950 820 1560 [[Greater short-nosed fruit bat]]
rect 1520 0 820 510 [[Egyptian fruit bat]]
rect 1520 510 820 950 [[Mexican free-tailed bat]]
rect 1520 950 820 1560 [[Greater mouse-eared bat]]
</imagemap>
| display_parents = 2
| taxon = Chiroptera
| authority = [[Johann Friedrich Blumenbach|Blumenbach]], 1779
| subdivision_ranks = Suborders
| subdivision = (traditional):
* [[Megachiroptera]]
* [[Microchiroptera]]
(present):
* [[Yinpterochiroptera]]
* [[Yangochiroptera]]
| range_map = Bat range.png
| range_map_caption = Worldwide distribution of bat species
}}
'''Bats''' are flying [[mammal]]s of the [[Order (biology)|order]] '''Chiroptera''' ({{IPAc-en|k|aɪ|ˈ|ɹ|ɒ|p|t|ə|ɹ|ə}}).{{efn|from the {{lang-grc|χείρ}}{{snd}}''cheir'', "hand" and πτερόν{{snd}}''pteron'', "wing".<ref name=EB1911>{{cite EB1911 |short=1<!--suppress ed. forename--> |wstitle=Chiroptera |volume=6 |pages=239–247}}</ref>}} With their forelimbs adapted as [[wing]]s, they are the only mammals capable of true and sustained [[flight]]. Bats are more agile in flight than most birds, [[Bat flight|flying]] with their very long spread-out digits covered with a thin membrane or [[patagium]]. The smallest bat, and arguably the [[Smallest organisms|smallest extant mammal]], is [[Kitti's hog-nosed bat]], which is {{convert|29|-|34|mm|in|frac=8|abbr=off}} in length, {{convert|150|mm|in|frac=2|abbr=on}} across the wings and {{convert|2|-|2.6|g|abbr=on|frac=32}} in mass. The largest bats are the [[flying foxes]], with the [[giant golden-crowned flying fox]] (''Acerodon jubatus'') reaching a weight of {{convert|1.6|kg|lb|frac=4|abbr=on}} and having a wingspan of {{convert|1.7|m|ftin|abbr=on|0}}.
The second largest order of mammals after [[rodents]], bats comprise about 20% of all classified mammal species worldwide, with over 1,400 species. These were traditionally divided into two suborders: the largely fruit-eating [[megabat]]s, and the [[Animal echolocation|echolocating]] [[microbat]]s. But more recent evidence has supported dividing the order into [[Yinpterochiroptera]] and [[Yangochiroptera]], with megabats as members of the former along with several species of microbats. Many bats are [[insectivore]]s, and most of the rest are [[frugivore]]s (fruit-eaters) or [[nectarivore]]s (nectar-eaters). A few species feed on animals other than insects; for example, the [[vampire bat]]s [[Hematophagy|feed on blood]]. Most bats are [[nocturnal]], and many roost in caves or other refuges; it is uncertain whether bats have these behaviours to escape [[predator]]s. Bats are present throughout the world, with the exception of extremely cold regions. They are important in their ecosystems for [[pollinator|pollinating]] [[flower]]s and dispersing seeds; many tropical plants depend entirely on bats for these services.
Bats provide humans with some direct benefits, at the cost of some disadvantages. Bat dung has been mined as [[guano]] from caves and used as fertiliser. Bats consume insect pests, reducing the need for [[pesticide]]s and other insect management measures. They are sometimes numerous enough and close enough to human settlements to serve as tourist attractions, and they are used as food across Asia and the [[Pacific Rim]]. However, fruit bats are frequently considered pests by fruit growers. Due to their physiology, bats are one type of animal that acts as a [[natural reservoir]] of many [[pathogen]]s, such as [[rabies]]; and since they are highly mobile, social, and long-lived, they can readily spread disease among themselves. If humans interact with bats, these traits become potentially dangerous to humans. Some bats are also predators of [[mosquito]]es, suppressing the transmission of [[mosquito-borne disease]]s.
Depending on the culture, bats may be symbolically associated with positive traits, such as protection from certain diseases or risks, rebirth, or long life, but in the West, bats are popularly associated with darkness, malevolence, witchcraft, [[vampire]]s, and death.
== Etymology ==
An older English name for bats is [[wikt:flittermouse|flittermouse]], which matches their name in other [[Germanic languages]] (for example German ''Fledermaus'' and Swedish ''fladdermus''), related to the fluttering of wings. [[Middle English]] had ''bakke'', most likely cognate with Old Swedish ''natbakka'' ("night-bat"), which may have undergone a shift from ''-k-'' to ''-t-'' (to Modern English ''bat'') influenced by Latin ''blatta'', "moth, nocturnal insect". The word "bat" was probably first used in the early 1570s.<ref>{{cite web |url=http://www.dictionary.com/browse/bat?s=ts |title=Bat |publisher=Dictionary.com |access-date=9 September 2017}}</ref><ref>{{cite web |url=http://www.etymonline.com/index.php?term=bat |title=Bat, noun 2 |publisher=Online Etymology Dictionary |access-date=24 June 2013}}</ref> The name "Chiroptera" derives from {{lang-grc|χείρ}}{{snd}}''cheir'', "hand"<ref>{{cite web |url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dxei%2Fr |title=χείρ |publisher=A Greek-English Lexicon |editor1=Liddell, Henry G.|editor2=Scott, Robert |access-date=9 September 2017}}</ref> and πτερόν{{snd}}''pteron'', "wing".<ref name="EB1911"/><ref>{{cite web |url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dptero%2Fn |title=πτερόν |publisher=A Greek-English Lexicon |editor1=Liddell, Henry G.|editor2=Scott, Robert |access-date=9 September 2017}}</ref>
== Phylogeny and taxonomy ==
[[File:Batfossil.jpg|thumb|upright|The early [[Eocene]] fossil microchiropteran ''[[Icaronycteris]]'', from the [[Green River Formation]]]]
=== Evolution ===
The delicate [[skeleton]]s of bats do not fossilise well; it is estimated that only 12% of bat [[genera]] that lived have been found in the fossil record.<ref>{{cite journal |last1=Eiting |first1=T. P. |last2=Gunnell |first2=G. F. |year=2009 |title=Global completeness of the bat fossil record |journal=Journal of Mammalian Evolution |volume=16 |issue=3 |pages=151–173 |doi=10.1007/s10914-009-9118-x|s2cid=5923450 }}</ref> Most of the oldest known bat fossils were already very similar to modern microbats, such as ''Archaeopteropus'' (32 million years ago). The oldest known bat fossils include ''Archaeonycteris praecursor'' and ''Altaynycteris aurora'' (55-56 million years ago), both known only from isolated teeth.<ref>{{Cite journal |last1=Tabuce |first1=Rodolphe |last2=Antunes |first2=Miguel Telles |last3=Sigé |first3=Bernard |date=2009-06-12 |title=A new primitive bat from the earliest Eocene of Europe |url=https://www.tandfonline.com/doi/full/10.1671/039.029.0204 |journal=Journal of Vertebrate Paleontology |language=en |volume=29 |issue=2 |pages=627–630 |doi=10.1671/039.029.0204 |bibcode=2009JVPal..29..627T |s2cid=86384840 |issn=0272-4634}}</ref><ref>{{Cite journal |last1=Jones |first1=Matthew F. |last2=Li |first2=Qiang |last3=Ni |first3=Xijun |last4=Beard |first4=K. Christopher |date=June 2021 |title=The earliest Asian bats (Mammalia: Chiroptera) address major gaps in bat evolution |journal=Biology Letters |language=en |volume=17 |issue=6 |pages=20210185 |doi=10.1098/rsbl.2021.0185 |pmid=34186001 |pmc=8241488 |issn=1744-957X}}</ref> The oldest complete bat skeleton is ''[[Icaronycteris]] gunnelli'' (52 million years ago), known from two skeletons discovered in Wyoming.<ref name=simmons2008 /><ref>{{Cite journal |last1=Rietbergen |first1=Tim B. |last2=Ostende |first2=Lars W. van den Hoek |last3=Aase |first3=Arvid |last4=Jones |first4=Matthew F. |last5=Medeiros |first5=Edward D. |last6=Simmons |first6=Nancy B. |date=2023-04-12 |title=The oldest known bat skeletons and their implications for Eocene chiropteran diversification |journal=PLOS ONE |language=en |volume=18 |issue=4 |pages=e0283505 |doi=10.1371/journal.pone.0283505 |doi-access=free |issn=1932-6203 |pmc=10096270 |pmid=37043445|bibcode=2023PLoSO..1883505R }}</ref> The extinct bats ''[[Palaeochiropteryx tupaiodon]]'' and ''[[Hassianycteris kumari]]'', both of which lived 48 million years ago, are the first fossil mammals whose colouration has been discovered: both were reddish-brown.<ref>{{cite web |url=http://www.sci-news.com/paleontology/science-original-color-extinct-bats-03283.html |title=Paleontologists Determine Original Color of Extinct Bats |date=29 September 2015 |access-date=10 September 2017 |publisher=SciNews}}</ref><ref>{{cite journal |first1=C. |last1=Colleary |first2=A. |last2=Dolocanc |first3=J. |last3=Gardnerd |first4=Suresh |last4=Singha |first5=M. |last5=Wuttkee |year=2015 |title=Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils |journal=Proceedings of the National Academy of Sciences of the United States of America|volume=112 |issue=41 |pages=12592–12597 |doi=10.1073/pnas.1509831112 |pmc=4611652 |bibcode=2015PNAS..11212592C |pmid=26417094|doi-access=free }}</ref>
Bats were formerly grouped in the superorder [[Archonta]], along with the [[treeshrew]]s (Scandentia), [[colugo]]s (Dermoptera), and [[primate]]s.<ref name="Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa">{{cite journal |last1=Van de Bussche |first1=R. A. |last2=Hoofer |first2=S. R. |title=Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa |journal=Journal of Mammalogy |year=2004 |volume=85 |issue=2 |pages=321–330 |doi=10.1644/1545-1542(2004)085<0321:Prarcf>2.0.Co;2|doi-access=free }}</ref> Modern genetic evidence now places bats in the superorder [[Laurasiatheria]], with its [[sister taxon]] as [[Ferungulata]], which includes [[carnivora]]ns, [[pangolin]]s, [[odd-toed ungulate]]s, [[even-toed ungulate]]s, and [[cetacea]]ns.<ref name="Bat Schematics">{{cite web |url=http://www.ucmp.berkeley.edu/mammal/eutheria/chirosy.html |title=Chiroptera: Systematics |first=D. |last=Smith |publisher=University of California Museum of Paleontology |access-date=9 September 2017}}</ref><ref name="classification">{{cite journal |quote=Several molecular studies have shown that Chiroptera belong to the Laurasiatheria (represented by carnivores, pangolins, cetartiodactyls, eulipotyphlans, and perissodactyls) and are only distantly related to dermopterans, scandentians, and primates. (Nikaido et al. 2000; Lin and Penny 2001; Madsen et al. 2001; Murphy et al. 2001''a'', 2001''b''; Van Den Bussche and Hoofer 2004) |title=A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera) |doi=10.1093/molbev/msi180 |year=2005 |author=Eick, G. N. |journal=Molecular Biology and Evolution |volume=22 |pmid=15930153 |last2=Jacobs |first2=D. S. |last3=Matthee |first3=C. A. |issue=9 |pages=1869–1886|doi-access=free }}</ref><ref name=Pumo1998>{{cite journal |author=Pumo, D. E. |year=1998 |title=Complete Mitochondrial Genome of a Neotropical Fruit Bat, ''Artibeus jamaicensis'', and a New Hypothesis of the Relationships of Bats to Other Eutherian Mammals |journal=Journal of Molecular Evolution |volume=47 |issue=6 |pages=709–717 |doi=10.1007/PL00006430 |pmid=9847413|display-authors=etal |bibcode=1998JMolE..47..709P |s2cid=22900642 }}</ref><ref name=Zhou2011>{{cite journal |author=Zhou, X. |year=2011 |title=Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals |journal=Systematic Biology |volume=61 |issue=1 |pages=150–164 |doi=10.1093/sysbio/syr089 |pmid=21900649 |pmc=3243735 |display-authors=etal}}</ref><ref name="Tsagkogeorga"/> One study places Chiroptera as a sister taxon to odd-toed ungulates (Perissodactyla).<ref>{{cite journal |last=Zhang |first=G. |author2=Cowled, C. |author3=Shi, Z. |author4=Huang, Z. |author5=Bishop-Lilly, K. A. |author6=Fang, X. |author7=Wynne, J. W. |author8=Xiong, Z. |author9=Baker, M. L. |author10=Zhao, W. |author11=Tachedjian, M. |author12=Zhu, Y. |author13=Zhou, P. |author14=Jiang, X. |author15=Ng, J. |author16=Yang, L. |author17=Wu, L. |author18=Xiao, J. |author19=Feng, Y. |author20=Chen, Y. |author21=Sun, X. |author22=Zhang, Y. |author23=Marsh, G. A. |author24=Crameri, G. |author25=Broder, C. C. |author26=Frey, K. G. |author27=Wang, L.-F. |author28=Wang, J. |s2cid=31192292 |title=Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity |journal=Science |year=2012 |volume=339 |issue=6118 |pages=456–460 |doi=10.1126/science.1230835 |bibcode=2013Sci...339..456Z |pmid=23258410|pmc=8782153 }}</ref>
{{cladogram|align=left|style=width:800px;font-size:85%;line-height:75%|caption=[[Phylogenetic tree]] showing Chiroptera within [[Laurasiatheria]], with [[Fereuungulata]] as its [[sister taxon]] according to a 2013 study<ref name="Tsagkogeorga"/>
|cladogram={{clade
|label1=[[Boreoeutheria]]
|1={{clade
|1=[[Euarchontoglires]] (primates, treeshrews, rodents, rabbits) [[File:Cynocephalus doguera - 1700-1880 - Print - Iconographia Zoologica - Special Collections University of Amsterdam - (white background).tiff|50px]]
|label2=[[Laurasiatheria]]
|2={{clade
|1= [[Eulipotyphla]] (hedgehogs, shrews, moles, solenodons)[[File:Mole white background.jpg|60px| ]]
|label2=[[Scrotifera]]
|2={{clade
|1= '''Chiroptera''' (bats) [[File:Flying fox at botanical gardens in Sydney (cropped and flipped).jpg|80px| ]]
|label2=[[Fereuungulata]]
|2={{clade
|label1=[[Ferae]]
|1={{clade
|1= [[Pangolin|Pholidota]] (pangolins) [[File:FMIB 46859 Pangolin a grosse queue white background.jpeg|70px| ]]
|2= [[Carnivora]] (cats, hyenas, dogs, bears, seals, weasels) [[File:Hyaena striata - 1818-1842 - Print - Iconographia Zoologica - Special Collections University of Amsterdam -(white background).jpg|60 px]] [[File:Zalophus californianus J. Smit (white background).jpg|60 px]]
}}
|label2=[[Euungulata]]
|2={{clade
|1= [[Odd-toed ungulate|Perissodactyla]] (horses, tapirs, rhinos) [[File:Equus quagga (white background).jpg|60px| ]]
|2= [[Cetartiodactyla]] (camels, ruminants, whales) [[File:Walia ibex illustration white background.png|60 px]] [[File:Megaptera novaeangliae NOAA.jpg|100 px]]
}}
}}
}}
}}
}}
}}
}}
{{Clear}}
The [[flying primate hypothesis]] proposed that when adaptations to flight are removed, megabats are allied to [[primate]]s by anatomical features not shared with microbats and thus flight evolved twice in mammals.<ref name="Bailey1992">{{cite journal|last1=Bailey|first1=W. J.|last2=Slightom|first2=J. L.|last3=Goodman|first3=M.|year=1992|title=Rejection of the "Flying Primate" Hypothesis by Phylogenetic Evidence from the ε-globin Gene|journal=Science|volume=256|issue=5053|pages=86–89|doi=10.1126/science.1301735|pmid=1301735|bibcode=1992Sci...256...86B}}</ref> Genetic studies have strongly supported the [[monophyly]] of bats and the single origin of mammal flight.<ref name=simmons2008/><ref name="Bailey1992"/>
==== Coevolutionary evidence ====
An independent molecular analysis trying to establish the dates when bat ectoparasites ([[Cimicidae|bedbugs]]) evolved came to the conclusion that bedbugs similar to those known today (all major extant lineages, all of which feed primarily on bats) had already diversified and become established over 100 mya (i.e., long before the oldest records for bats, 52 mya), suggesting that they initially all evolved on non-bat hosts and "bats were colonized several times independently, unless the evolutionary origin of bats has been grossly underestimated."<ref>{{Cite journal|last1=Roth|first1=Steffen|last2=Balvín|first2=Ondřej|last3=Siva-Jothy|first3=Michael T.|last4=Iorio|first4=Osvaldo Di|last5=Benda|first5=Petr|last6=Calva|first6=Omar|last7=Faundez|first7=Eduardo I.|last8=Khan|first8=Faisal Ali Anwarali|last9=McFadzen|first9=Mary|last10=Lehnert|first10=Margie P.|last11=Naylor|first11=Richard|date=2019-06-03|title=Bedbugs Evolved before Their Bat Hosts and Did Not Co-speciate with Ancient Humans|journal=Current Biology|language=English|volume=29|issue=11|pages=1847–1853.e4|doi=10.1016/j.cub.2019.04.048|issn=0960-9822|pmid=31104934|s2cid=155105169 |doi-access=free}}</ref> [[Flea]]s, as a group, are quite old (most flea families formed around the end of the Cretaceous<ref>{{cite journal |last1=Zhu |first1=Qiyun |last2=Hastriter |first2=Michael |last3=Whiting |first3=Michael |last4=Dittmar |first4=Katherina |title=Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria |journal=Molecular Phylogenetics and Evolution |date=September 2015 |volume=90 |pages=129–139 |biorxiv=10.1101/014308 |doi=10.1016/j.ympev.2015.04.027 |pmid=25987528|s2cid=13433327 }}</ref>), but no analyses have provided estimates for the age of the flea lineages associated with bats. The oldest known members of a different lineage of bat ectoparasites ([[Streblidae|bat flies]]), however, are from roughly 20 mya, well after the origin of bats.<ref name="Poinar&Brown2012">{{cite journal |last1=Poinar |first1=G. O. Jr. |last2=Brown |first2=A. |year=2012 |title=The first fossil streblid bat fly, ''Enischnomyia stegosoma'' n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae) |journal=Systematic Parasitology |volume=81 |issue=2 |pages=79–86 |doi=10.1007/s11230-011-9339-2 |pmid=22183917 |s2cid=14469619 |url=https://www.researchgate.net/publication/51902205}}</ref> The bat-ectoparasitic [[earwig]] family [[Arixeniidae]] has no fossil record, but is not believed to originate more than 23 mya.<ref name="EvolutionoftheInsects">{{cite book|last=Grimaldi|first=David|author2=Michael Engel|title=Evolution of the Insects|publisher=Cambridge University Press|location=Cambridge University|date=May 2005|edition=1|series=Cambridge Evolution Ser.|pages=217–222|chapter=7|isbn=978-0-521-82149-0|chapter-url=https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig%20related&pg=PA217|access-date=16 November 2009|archive-date=9 June 2021|archive-url=https://web.archive.org/web/20210609004340/https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig+related&pg=PA217|url-status=live}}</ref>
===Inner systematic===
{{cladogram|align=left|style=width:700px;font-size:85%;line-height:75%|caption=Internal relationships of the Chiroptera, divided into the traditional megabat and microbat clades, according to a 2011 study<ref name=agnarsson>{{cite journal |first1=I. |last1=Agnarsson |first2=C. M. |last2=Zambrana-Torrelio |first3=N. P. |last3=Flores-Saldana |first4=L. J. |last4=May-Collado |year=2011 |title=A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) |journal=PLOS Currents |volume=3 |pages=RRN1212 |doi=10.1371/currents.RRN1212 |doi-broken-date=31 January 2024 |pmid=21327164 |pmc=3038382 |doi-access=free }}</ref>
|cladogram={{clade
|label1='''Chiroptera'''
|1={{clade
|1={{clade
|label1=[[Megabat|Megachiroptera]]
|1=[[Megabat|Pteropodidae]] (megabats) [[File:Mariana Fruit Bat.jpg|40px]]
}}
|2={{clade
|label1=[[Microbat|Microchiroptera]]
|1={{clade
|1={{clade
|label1=[[Mouse-tailed bat|Rhinolophoidea]]
|1={{clade
|1=[[Megadermatidae]] (false vampire bats) [[File:Megaderma spasma.jpg|60px]]
|2={{clade
|1={{clade
|1=[[Kitti's hog-nosed bat|Craseonycteridae]] (Kitti's hog-nosed bat) [[File:Craseonycteris thonglongyai.png|60px]]
|2=[[Mouse-tailed bat|Rhinopomatidae]] (mouse-tailed bats) [[File:Rhinopoma microphyllum.jpg|60px]]
}}
|3={{clade
|1=[[Hipposideridae]] (Old World leaf-nosed bats) [[File:Commerson's leaf-nosed bats hipposideros commersoni.jpg|60px]]
|2=[[Horseshoe bat|Rhinolophidae]] (horseshoe bats) [[File:Rhinolophus rouxii.jpg|40px]]
}}
}}
}}
}}
|2={{clade
|label1=[[Yangochiroptera]]
|1={{clade
|1={{clade
|1={{clade
|1={{clade
|1=[[Miniopterus|Miniopteridae]] (long winged bat) [[File:Miniopterus schreibersii dasythrix.jpg|60px]]
}}
|2={{clade
|1={{clade
|1={{clade
|1=[[Bulldog bat|Noctilionidae]] (fisherman bats) [[File:Captive Noctilio leporinus.jpg|40px]]
|2=[[Mormoopidae]] (''[[Pteronotus]]'') [[File:Pteronotus parnellii.jpg|60px]]
}}
|2={{clade
|1={{clade
|1={{clade
|1=[[Mystacinidae]] (New Zealand short-tailed bats) [[File:MystacinaTuberculataFord.jpg|70px]]
|2=[[Thyroptera|Thyropteridae]] (disc-winged bats)
}}
|2={{clade
|1=[[Furipteridae]] [[File:Furipterus horrens.jpg|50px]]
|2=[[Mormoopidae]] (''[[Mormoops]]'') [[File:Mormoops megalophylla.JPG|50px]]
}}
}}
|3<!--should be 2?-->=[[Leaf-nosed bat|Phyllostomidae]] (New World leaf-nosed bats) [[File:Desmodus rotundus A Catenazzi.jpg|50px]]
}}
}}
}}
|3={{clade
|1={{clade
|1=[[Free-tailed bat|Molossidae]] (free-tailed bats) [[File:Mormopterus beccarii astrolabiensis 1.jpg|50px]]
|2=[[Emballonuridae]] (sac-winged bats) [[File:Emballonura semicaudata, Ovalau Island - Joanne Malotaux (22057146275).jpg|50px]]
}}
|2={{clade
|1={{clade
|1=[[Myzopoda|Myzopodidae]] (sucker-footed bats)
|2=[[Emballonuridae]] (''[[Taphozous]]'') [[File:Mauritian Tomb Bat.jpg|50px]]
}}
|2={{clade
|1=[[Natalidae]] (funnel-eared bats) [[File:Chilonatalus micropus.png|50px]]
|2=[[Vespertilionidae]] (vesper bats) [[File:Barbastella barbastellus 01-cropped.jpg|50px]]
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
{{Clear}}
[[Genetics|Genetic]] evidence indicates that megabats originated during the early [[Eocene]], and belong within the four major lines of microbats.<ref name=Tsagkogeorga /> Two new suborders have been proposed; [[Yinpterochiroptera]] includes the [[Megabat|Pteropodidae]], or megabat family, as well as the families [[Horseshoe bat|Rhinolophidae]], [[Hipposideridae]], [[Craseonycteridae]], [[Megadermatidae]], and [[Rhinopomatidae]].<ref name="Teeling-etal-2005">{{cite journal |last=Teeling |first=E.C. |author2=Springer, M. S. |author3=Madsen, O. |author4=Bates, P. |author5=O'Brien, S. J. |author6=Murphy, W. J. |year=2005 |author-link=Emma Teeling |title=A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record |journal=Science |volume=307 |issue=5709 |pages=580–584 |bibcode=2005Sci...307..580T |doi=10.1126/science.1105113 |pmid=15681385|s2cid=25912333 }}</ref> [[Yangochiroptera]] includes the other families of bats (all of which use laryngeal echolocation), a conclusion supported by a 2005 DNA study.<ref name="Teeling-etal-2005" /> A 2013 phylogenomic study supported the two new proposed suborders.<ref name="Tsagkogeorga">{{cite journal |doi=10.1016/j.cub.2013.09.014 |last1=Tsagkogeorga |first1=G. |last2=Parker |first2=J. |last3=Stupka |first3=E. |last4=Cotton |first4=J. A. |last5=Rossiter |first5=S. J. |year=2013 |title=Phylogenomic analyses elucidate the evolutionary relationships of bats (Chiroptera) |journal=Current Biology |volume=23 |pages=2262–2267 |issue=22 |pmid=24184098|doi-access=free }}</ref>
{{cladogram|align=left|style=width:700px;font-size:85%;line-height:75%|caption=Internal relationships of the Chiroptera, with the megabats subsumed within Yinpterochiroptera, according to a 2013 study<ref name="Tsagkogeorga"/>
|cladogram={{clade
|label1='''Chiroptera'''
|1={{clade
|1={{clade
|1=[[Yangochiroptera]] (as above) [[File:Pteronotus parnellii.jpg|60px]]
|2={{clade
|label1=[[Yinpterochiroptera]]
|1={{clade
|1=[[Megabat|Pteropodidae]] (megabats) [[File:Mariana Fruit Bat.jpg|40px]]
|2={{clade
|label1=[[Rhinolophoidea]]
|1={{clade
|1=[[Megadermatidae]] (false vampire bats) [[File:Megaderma spasma.jpg|60px]]
|2= horseshoe bats and allies [[File:Rhinolophus rouxii.jpg|40px]]
}}
}}
}}
}}
}}
}}
}}
}}{{Clear}}
<!--flight-->
[[File:Golden crowned fruit bat.jpg|thumb|upright=0.6|[[Giant golden-crowned flying fox]], ''Acerodon jubatus'']]
The 2003 discovery of an early fossil bat from the 52-million-year-old [[Green River Formation]], ''[[Onychonycteris|Onychonycteris finneyi]]'', indicates that flight evolved before echolocative abilities.<ref>{{cite journal |last1=Simmons |first1=N. B. |first2=K. L. |last2=Seymour |first3=J. |last3=Habersetzer |first4=G. F. |last4=Gunnell |year=2008 |title=Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation |journal=Nature |volume=451 |issue=7180 |pages=818–816 |doi=10.1038/nature06549 |pmid=18270539|bibcode=2008Natur.451..818S |hdl=2027.42/62816 |s2cid=4356708 |hdl-access=free }}</ref><ref>{{cite news |url=http://news.bbc.co.uk/2/hi/science/nature/7243502.stm |title=Bat fossil solves evolution poser |date=13 February 2008 |work=BBC News|access-date=17 December 2017}}</ref> ''Onychonycteris'' had claws on all five of its fingers, whereas modern bats have at most two claws on two digits of each hand. It also had longer hind legs and shorter forearms, similar to climbing mammals that hang under branches, such as [[sloth]]s and [[gibbon]]s. This palm-sized bat had short, broad wings, suggesting that it could not fly as fast or as far as later bat species. Instead of flapping its wings continuously while flying, ''Onychonycteris'' probably alternated between flaps and glides in the air.<ref name=simmons2008>{{cite journal |journal=Nature |doi=10.1038/nature06549 |title=Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation |first1=N. B. |last1=Simmons |first2=K. L. |last2=Seymour |first3=J. |last3=Habersetzer |first4=G. F. |last4=Gunnell |volume=451 |year=2008 |pmid=18270539 |issue=7180 |bibcode=2008Natur.451..818S |pages=818–821|hdl=2027.42/62816 |s2cid=4356708 |hdl-access=free }}</ref> This suggests that this bat did not fly as much as modern bats, but flew from tree to tree and spent most of its time climbing or hanging on branches.<ref name=norberg>{{cite book |url={{google books|plainurl=yes |id=xf2QW_TS6asC |page=206}}|first=U. M. |last=Norberg |editor1-first=P. C. |editor1-last=Wainwright |editor2-first=S. M. |editor2-last=Reilly |year=1994 |title=Ecological Morphology: Integrative Organismal Biology |publisher=University of Chicago Press |pages=206–208 |isbn=978-0-226-86995-7}}</ref> The distinctive features of the ''Onychonycteris'' fossil also support the hypothesis that mammalian flight most likely evolved in arboreal locomotors, rather than terrestrial runners. This model of flight development, commonly known as the "trees-down" theory, holds that bats first flew by taking advantage of height and gravity to drop down on to prey, rather than running fast enough for a ground-level take off.<ref>{{cite journal |last=Bishop |first=K. L. |year=2008 |title=The Evolution of Flight in Bats: Narrowing the Field of Plausible Hypotheses |journal=The Quarterly Review of Biology |volume=83 |issue=2 |pages=153–169 |doi=10.1086/587825 |pmid=18605533|s2cid=21638734 }}</ref><ref name="Kaplan2011">{{cite journal |last1=Kaplan |first1=Matt |title=Ancient bats got in a flap over food |journal=Nature|year=2011 |doi=10.1038/nature.2011.9304|s2cid=84015350 }}</ref>
<!--echoes-->
The molecular phylogeny was controversial, as it pointed to microbats [[paraphyly|not having a unique common ancestry]], which implied that some seemingly unlikely transformations occurred. The first is that laryngeal echolocation evolved twice in bats, once in Yangochiroptera and once in the rhinolophoids.<ref>{{cite journal |author=Teeling |year=2000 |title=Molecular evidence regarding the origin of echolocation and flight in bats |journal=Nature |volume=403 |issue=6766 |pages=188–192 |bibcode=2000Natur.403..188T |doi=10.1038/35003188 |last2=Teeling |first2=E. C. |last3=Scally |first3=M. |last4=Kao |first4=D. J. |last5=Romagnoli |first5=M. L. |last6=Springer |first6=M. S. |author-link2=Emma Teeling |pmid=10646602|s2cid=205004782 }}</ref> The second is that laryngeal echolocation had a single origin in Chiroptera, was subsequently lost in the family Pteropodidae (all megabats), and later evolved as a system of tongue-clicking in the genus ''Rousettus''.<ref>{{cite journal |year=2001 |title=Integrated fossil and molecular data reconstruct bat echolocation |journal=Proceedings of the National Academy of Sciences |volume=98 |issue=11 |pages=6241–6246 |bibcode=2001PNAS...98.6241S |doi=10.1073/pnas.111551998 |pmid=11353869 |pmc=33452|last1=Springer|first1=M. S.|last2=Teeling |first2=E. C. |last3=Madsen |first3=O. |last4=Stanhope |first4=M. J. |last5=De Jong |first5=W. W.|author-link2=Emma Teeling|doi-access=free }}</ref> Analyses of the sequence of the vocalization gene ''FoxP2'' were inconclusive on whether laryngeal echolocation was lost in the pteropodids or gained in the echolocating lineages.<ref>{{cite journal |last1=L. |first1=G. |last2=Wang |first2=J. |last3=Rossiter |first3=S. J. |last4=Jones |first4=G. |last5=Zhang |first5=S. |year=2007 |title=Accelerated FoxP2 evolution in echolocating bats |journal=PLOS ONE|volume=2 |issue=19 |pages=e900|doi=10.1371/journal.pone.0000900 |pmc=1976393 |bibcode=2007PLoSO...2..900L |pmid=17878935|doi-access=free }}</ref> Echolocation probably first derived in bats from communicative calls. The Eocene bats ''[[Icaronycteris]]'' (52 million years ago) and ''[[Palaeochiropteryx]]'' had cranial adaptations suggesting an ability to detect [[ultrasound]]. This may have been used at first mainly to forage on the ground for insects and map out their surroundings in their gliding phase, or for communicative purposes. After the adaptation of flight was established, it may have been refined to target flying prey by echolocation.<ref name=norberg/> Analyses of the hearing gene ''Prestin'' seem to favour the idea that echolocation developed independently at least twice, rather than being lost secondarily in the pteropodids,<ref>{{cite journal|last1=Li |first1=G.|last2=Wang |first2=J. |last3=Rossiter |first3=S. J.|last4=Jones |first4=G. |last5=Cotton |first5=J. A. |last6=Zhang |first6=S. |year=2008 |title=The hearing gene Prestin reunites the echolocating bats |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=105 |issue=37 |pages=13959–13964 |doi=10.1073/pnas.0802097105 |pmc=2544561 |bibcode=2008PNAS..10513959L |pmid=18776049|doi-access=free}}</ref> but [[ontogeny|ontogenic]] analysis of the cochlea supports that laryngeal echolocation evolved only once.<ref>{{cite journal|doi=10.1038/s41559-016-0021|pmid=28812602|title=Prenatal development supports a single origin of laryngeal echolocation in bats|journal=Nature Ecology & Evolution|volume=1|issue=2|pages=21|year=2017|last1=Wang|first1=Zhe|last2=Zhu|first2=Tengteng|last3=Xue|first3=Huiling|last4=Fang|first4=Na|last5=Zhang|first5=Junpeng|last6=Zhang|first6=Libiao|last7=Pang|first7=Jian|last8=Teeling|first8=Emma C.|last9=Zhang|first9=Shuyi|bibcode=2017NatEE...1...21W |s2cid=29068452|author-link=Emma Teeling}}</ref>
===Classification===
{{See also|List of bats|List of fruit bats}}
Bats are [[placental mammal]]s. After [[rodent]]s, they are the largest [[order (biology)|order]], making up about 20% of mammal species.<ref name="LeiDong2016">{{cite journal |last1=Lei |first1=M. |last2=Dong |first2=D. |title=Phylogenomic analyses of bat subordinal relationships based on transcriptome data |journal=Scientific Reports |year=2016 |volume=6 |page=27726 |doi=10.1038/srep27726 |pmid=27291671 |pmc=4904216 |bibcode=2016NatSR...627726L }}</ref> In 1758, [[Carl Linnaeus]] classified the seven bat species he knew of in the genus ''[[Vespertilio]]'' in the order [[Primates]]. Around twenty years later, the German naturalist [[Johann Friedrich Blumenbach]] gave them their own order, Chiroptera.<ref>{{cite book |chapter-url={{google books|plainurl=yes|id=gI-Sly7oq7QC|page=288}}|chapter=Phylogeny and systematics |title=The Biology of Bats |last=Neuweiler |first=Gerhard |year=2000 |publisher=Oxford University Press |isbn=978-0195099508 |pages=287–299}}</ref> Since then, the number of described species has risen to over 1,400,<ref>{{cite web| url=https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ| website=ASM Mammal Diversity Database| date=8 June 2020| title=<nowiki>Search=Chiroptera</nowiki>| access-date=8 June 2020| archive-date=26 May 2017| archive-url=https://web.archive.org/web/20170526143337/https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ| url-status=dead}}</ref> traditionally classified as two suborders: [[Megabat|Megachiroptera]] (megabats), and [[Microbat|Microchiroptera]] (microbats/echolocating bats).<ref name=prothero>{{cite book |first=D. R. |last=Prothero |year=2017 |chapter-url={{Google books|plainurl=yes|id=eiftDAAAQBAJ|page=113}} |title=The Princeton Field Guide to Prehistoric Mammals |chapter=Laurasiatheria: Chiroptera |publisher=Princeton University Press |pages=112–116 |isbn=978-0-691-15682-8}}</ref> Not all megabats are larger than microbats.<ref>{{cite journal |first1=J. M. |last1=Hutcheon |first2=T. |last2=Garland |year=2004 |title=Are Megabats Big? |journal=Journal of Mammalian Evolution |volume=11 |issue=3/4 |pages=257 |doi=10.1023/B:JOMM.0000047340.25620.89 |s2cid=11528722 |url=https://www.researchgate.net/publication/226036305}}</ref> Several characteristics distinguish the two groups. Microbats use [[Animal echolocation|echolocation]] for navigation and finding prey, but megabats apart from those in the genus ''[[Rousettus]]'' do not.<ref name="Holland 2004">{{cite journal |title=Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810 |author=Holland, R. A. |journal=Journal of Experimental Biology |year=2004 |volume=207 |pages=4361–4369 |doi=10.1242/jeb.01288 |issue=25 |pmid=15557022|doi-access= |s2cid=2715542 }}</ref> Accordingly, megabats have a well-developed eyesight.<ref name=prothero/> Megabats have a claw on the second finger of the forelimb.<ref>{{cite journal |title=Natural selection of mammalian brain components |author=Brown, W. M. |journal=Trends in Ecology and Evolution |year=2001 |volume=16 |issue=9 |pages=471–473 |doi=10.1016/S0169-5347(01)02246-7}}</ref><ref name="Olney 1994"/> The external ears of microbats do not close to form a ring; the edges are separated from each other at the base of the ear.<ref name="Olney 1994">{{cite book |title=Creative Conservation: Interactive Management of Wild and Captive Animals |url=https://archive.org/details/creativeconserva00magi |url-access=limited |publisher=Springer |author=Stephen, J. |author2=Olney, P. |year=1994 |page=[https://archive.org/details/creativeconserva00magi/page/n378 352] |isbn=978-0412495700}}</ref> Megabats [[frugivory|eat fruit]], [[nectarivore|nectar]], or pollen, while most microbats [[insectivory|eat insects]]; others feed on fruit, nectar, pollen, [[piscivore|fish]], frogs, small mammals, or [[hematophagy|blood]].<ref name=prothero/>
[[File:Haeckel Chiroptera.jpg|thumb|upright|"Chiroptera" from [[Ernst Haeckel]]'s ''[[Kunstformen der Natur]]'', 1904]]
Below is a table chart following the bat classification of families recognized by various authors of the ninth volume of ''Handbook of the Mammals of the World'' published in 2019:<ref name="HMW2019">{{cite book | year = 2019 | editor1-last = Wilson | editor1-first = D.E.| editor2-last = Mittermeier | editor2-first = R.A. | title = Handbook of the Mammals of the World – Volume 9 | publisher = Lynx Ediciones |location=Barcelona | pages = 1–1008 |isbn =978-84-16728-19-0}}</ref>
{| class="wikitable"
|colspan="100%" align="center" bgcolor="#c2c2a9"|'''[[Chiroptera]] <small>Blumenbach, 1779</small>'''
|-
|colspan="100%" align="center" bgcolor="#d9d9c1"|'''[[Yinpterochiroptera]] <small>Springer, Teeling, Madsen, Stanhope & Jong, 2001</small>'''
|-
|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Pteropodidae|Pteropodoidea]] <small>J. E. Gray, 1821</small>'''
|-
! Family !! English Name !! Number of Species !! Image Figure
|-
|[[Pteropodidae]] <small>J. E. Gray, 1821</small>
|Old World fruit bats
|191
|[[File:Pteropus niger three.jpeg|100px]]
|-
|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Rhinolophoidea]] <small>J. E. Gray, 1825</small>'''
|-
! Family !! English Name !! Number of Species !! Image Figure
|-
|[[Rhinopomatidae]] <small>Bonaparte, 1838</small>
|Mouse-tailed bats
|6
|[[File:Mouse-Tailed Bat.jpg|100px]]
|-
|[[Craseonycteridae]] <small>Hill, 1974</small>
|Hog-nosed bat
|1
|[[File:Craseonycteris thonglongyai.png|100px]]
|-
|[[Megadermatidae]] <small>H. Allen, 1864</small>
|False-vampires
|6
|[[File:Greater False Vampire Bat (Megaderma lyra).jpg|100px]]
|-
|[[Rhinonycteridae]] <small>J. E. Gray, 1866</small>
|Trident bats
|9
|[[File:Rhinonicteris aurantia.jpg|100px]]
|-
|[[Hipposideridae]] <small>Lydekker, 1891</small>
|Old World leaf-nosed bats
|88
|[[File:Bat in a Cave.jpg|100px]]
|-
|[[Rhinolophidae]] <small>J. E. Gray, 1825</small>
|Horseshoe bats
|109
|[[File:Bat(20070605).jpg|100px]]
|-
|colspan="100%" align="center" bgcolor="#d9d9c1"|'''[[Yangochiroptera]] <small>Koopman, 1984</small>'''
|-
|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Emballonuroidea]] <small>Gervais in de Castelnau, 1855</small>'''
|-
! Family !! English Name !! Number of Species !! Image Figure
|-
|[[Nycteridae]] <small>Van der Hoeven, 1855</small>
|Slit-faced bats
|15
|[[File:Common Slit-faced Bat (Nycteris thebaica) (7027172215).jpg|100px]]
|-
|[[Emballonuridae]] <small>Gervais in de Castelnau, 1855</small>
|Sheath-tailed bats
|54
|[[File:Emballonura semicaudata.jpg|100px]]
|-
|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Noctilionoidea]] <small>J. E. Gray, 1821</small>'''
|-
! Family !! English Name !! Number of Species !! Image Figure
|-
|[[Myzopodidae]] <small>Thomas, 1904</small>
|Madagascar sucker-footed bats
|2
|[[File:Myzopoda Myzopodidae.jpg|100px]]
|-
|[[Mystacinidae]] <small>Dobson, 1875</small>
|New Zealand short-tailed bats
|2
|[[File:Southern short-tailed bats, Mystacina tuberculata.jpg|100px]]
|-
|[[Thyropteridae]] <small>Miller, 1907</small>
|Disk-winged bats
|5
|[[File:Thyroptera discifera.jpg|100px]]
|-
|[[Furipteridae]] <small>J. E. Gray, 1866</small>
|Smoky bat and thumbless bat
|2
|[[File:Furipterus horrens.jpg|100px]]
|-
|[[Noctilionidae]] <small>J. E. Gray, 1821</small>
|Bulldog bats
|2
|[[File:Captive Noctilio leporinus.jpg|100px]]
|-
|[[Mormoopidae]] <small>Saussure, 1860</small>
|Ghost-faced, naked-backed and mustached bats
|18
|[[File:Mormoops megalophylla.JPG|100px]]
|-
|[[Phyllostomidae]] <small>J. E. Gray, 1825</small>
|New World leaf-nosed bats
|217
|[[File:Phyllostomus discolor b.jpg|100px]]
|-
|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Vespertilionoidea]] <small>J. E. Gray, 1821</small>'''
|-
! Family !! English Name !! Number of Species !! Image Figure
|-
|[[Natalidae]] <small>J. E. Gray, 1825</small>
|Funnel-eared bats
|10
|[[File:Natalus stramineus.jpg|100px]]
|-
|[[Molossidae]] <small>Gervais in de Castelnau, 1855</small>
|Free-tailed bats
|126
|[[File:Mormopterus beccarii astrolabiensis 1.jpg|100px]]
|-
|[[Miniopteridae]] <small>Dobson, 1875</small>
|Long-fingered bats
|38
|[[File:Southern bentwing bat.jpg|100px]]
|-
|[[Cistugidae]] <small>Lack et al., 2010</small>
|Wing-gland bats
|2
|
|-
|[[Vespertilionidae]] <small>J. E. Gray, 1821</small>
|Vesper bats
|496
|[[File:Vespertilio murinus 2.jpg|100px]]
|-
|}
==Anatomy and physiology==
===Skull and dentition===
[[File:Horniman fruit bat skin skeleton.jpg|thumb|right|A preserved megabat showing how the skeleton fits inside its skin]]
The head and teeth shape of bats can vary by species. In general, megabats have longer snouts, larger eye sockets and smaller ears, giving them a more dog-like appearance, which is the source of their nickname of "flying foxes".<ref>{{cite book|author=Fleming, T.|year=2003|title=A Bat Man in the Tropics: Chasing El Duende|url=https://archive.org/details/batmantropicscha00flem|url-access=limited|publisher=University of California Press|page=[https://archive.org/details/batmantropicscha00flem/page/n189 165]|isbn=978-0520236066}}</ref> Among microbats, longer snouts are associated with nectar-feeding.<ref name="MacDonald"/> while vampire bats have reduced snouts to accommodate large incisors and canines.<ref name=Greenhall1983>{{cite journal|author1=Greenhall, A.M. |author2=Joermann, G. |author3=Schmidt, U. |year=1983|title= Desmodus rotundus|journal= Mammalian Species|issue=202 |pages=1–6|doi=10.2307/3503895|jstor=3503895 |doi-access=free}}</ref>
Small insect-eating bats can have as many as 38 teeth, while vampire bats have only 20. Bats that feed on hard-shelled insects have fewer but larger teeth with longer canines and more robust lower jaws than species that prey on softer bodied insects. In nectar-feeding bats, the canines are long while the cheek-teeth are reduced. In fruit-eating bats, the cusps of the cheek teeth are adapted for crushing.<ref name="MacDonald"/> The upper incisors of vampire bats lack [[tooth enamel|enamel]], which keeps them razor-sharp.<ref name=Greenhall1983/> The bite force of small bats is generated through [[mechanical advantage]], allowing them to bite through the [[sclerotization|hardened]] armour of insects or the [[Peel (fruit)|skin]] of fruit.<ref>{{cite journal |first1=J. |last1=Senawi |first2=D. |last2=Schmieder |first3=B. |last3=Siemers |first4=T. |last4=Kingston |year=2015 |title=Beyond size – morphological predictors of bite force in a diverse insectivorous bat assemblage from Malaysia |journal=Functional Ecology |volume=29 |issue=11 |pages=1411–1420 |doi=10.1111/1365-2435.12447|doi-access=free |bibcode=2015FuEco..29.1411S }}</ref>
===Wings and flight===
{{Main|Bat flight|Bat wing development}}
Bats are the only mammals capable of sustained flight, as opposed to [[glide (flight)|gliding]], as in the [[flying squirrel]].<ref name=molecule>{{cite journal |last=Hunter |first=P. |year=2007 |title=The nature of flight: The molecules and mechanics of flight in animals |journal=Science and Society |volume=8 |issue=9 |pages=811–813 |pmid=17767190 |doi=10.1038/sj.embor.7401050 |pmc=1973956}}</ref> The fastest bat, the [[Mexican free-tailed bat]] (''Tadarida brasiliensis''), can achieve a [[ground speed]] of {{convert|160|km/h|mph|-1|abbr=on}}.<ref>{{cite journal |author1=McCracken, G. F. |author2=Safi, K. |author3=Kunz, T. H. |author4=Dechmann, D. K. N. |author5=Swartz, S. M. |author6=Wikelski, M.|title=Airplane tracking documents the fastest flight speeds recorded for bats |journal=Royal Society Open Science |volume=3 |issue=11 |pages=160398 |date=9 November 2016 |doi=10.1098/rsos.160398|pmid=28018618 |bibcode=2016RSOS....360398M |pmc=5180116}}</ref>
[[File:Flapping-Tail-Membrane-in-Bats-Produces-Potentially-Important-Thrust-during-Horizontal-Takeoffs-and-pone.0032074.s004.ogv|thumb|left|Little brown bat take off and flight]]
The finger bones of bats are much more flexible than those of other mammals, owing to their flattened cross-section and to low levels of [[calcium]] near their tips.<ref>{{Cite journal|last=Norberg|first=Ulla M.|date=1972|title=Bat wing structures important for aerodynamics and rigidity (Mammalia, Chiroptera)|url=https://doi.org/10.1007/BF00418147|journal=Zeitschrift für Morphologie der Tiere|language=en|volume=73|issue=1|pages=45–61|doi=10.1007/BF00418147|s2cid=38538056|issn=1432-234X}}</ref><ref>{{Cite journal|last1=Torres|first1=Diego A.|last2=Freitas|first2=Mariella B.|last3=da Matta|first3=Sérgio L. P.|last4=Novaes|first4=Rômulo D.|last5=Gonçalves|first5=Reggiani Vilela|date=2019-03-28|title=Is bone loss a physiological cost of reproduction in the Great fruit-eating bat Artibeus lituratus?|journal=PLOS ONE|volume=14|issue=3|pages=e0213781|doi=10.1371/journal.pone.0213781|issn=1932-6203|pmc=6438481|pmid=30921346|bibcode=2019PLoSO..1413781T|doi-access=free}}</ref> The elongation of bat digits, a key feature required for wing development, is due to the [[upregulation]] of [[bone morphogenetic protein]]s (Bmps). During [[embryo|embryonic development]], the gene controlling Bmp signalling, ''[[Bone morphogenetic protein 2|Bmp2]]'', is subjected to increased expression in bat forelimbs{{snd}}resulting in the extension of the manual digits. This crucial genetic alteration helps create the specialized limbs required for powered flight. The relative proportion of extant bat forelimb digits compared with those of Eocene fossil bats have no significant differences, suggesting that bat wing morphology has been conserved for over fifty million years.<ref name=Sears2006>{{cite journal |last=Sears |first=K. E. |author2=Behringer, R. R. |author3=Rasweiler, J. J. |author4=Niswander, L. A. |title=Development of bat flight: Morphologic and molecular evolution of bat wing digits |journal=Proceedings of the National Academy of Sciences |year=2006 |volume=103 |issue=17 |pages=6581–6586 |doi=10.1073/pnas.0509716103 |pmid=16618938 |pmc=1458926 |bibcode=2006PNAS..103.6581S |doi-access=free }}</ref> During flight, the bones undergo [[bending]] and [[shear stress|shearing]] [[stress (mechanics)|stress]]; the bending stresses felt are smaller than in terrestrial mammals, but the shearing stress is larger. The wing bones of bats have a slightly lower breaking stress point than those of birds.<ref>{{cite journal |last=Kirkpatrick |first=S. J. |year=1994 |title=Scale effects on the stresses and safety factors in the wing bones of birds and bats |journal=Journal of Experimental Biology |volume=190 |pages=195–215 |doi=10.1242/jeb.190.1.195 |pmid=7964391}}</ref>
As in other mammals, and unlike in birds, the [[radius (anatomy)|radius]] is the main component of the forearm. Bats have five elongated digits, which all radiate around the wrist. The thumb points forward and supports the [[leading edge]] of the wing, and the other digits support the tension held in the wing membrane. The second and third digits go along the wing tip, allowing the wing to be pulled forward against aerodynamic [[drag (physics)|drag]], without having to be thick as in [[pterosaur]] wings. The fourth and fifth digits go from the wrist to the [[trailing edge]], and repel the bending force caused by air pushing up against the stiff membrane.<ref name=pennycuick/> Due to their flexible joints, bats are more maneuverable and more dexterous than gliding mammals.<ref name=marshall2015>{{cite journal |last1=Marshall |first1=K. L. |last2=Chadha |first2=M. |last3=deSouza |first3=L. A. |last4=Sterbing-D'Angelo |first4=S. J. |last5=Moss |first5=C. F. |last6=Lumpkin |first6=E. A. |year=2015 |title=Somatosensory substrates of flight control in bats |journal=Cell Reports |volume=11 |issue=6 |pages=851–858 |doi=10.1016/j.celrep.2015.04.001 |pmid=25937277 |pmc=4643944}}</ref>
[[File:Big-eared-townsend-fledermaus.jpg|thumb|Wing membranes ([[patagium|patagia]]) of [[Townsend's big-eared bat]], ''Corynorhinus townsendii'']]
The wings of bats are much thinner and consist of more bones than the wings of birds, allowing bats to maneuver more accurately than the latter, and fly with more lift and less drag.<ref>{{cite web |author=Brown University |year=2007 |url=https://www.sciencedaily.com/releases/2007/01/070118161402.htm |title=Bats in Flight Reveal Unexpected Aerodynamics |publisher=ScienceDaily |access-date=31 October 2017}}</ref> By folding the wings in toward their bodies on the upstroke, they save 35 percent energy during flight.<ref>{{cite journal|author1=Riskin, D. K. |author2=Bergou, A. |author3=Breuer, K. S. |author4=Swartz, S. M. |year=2012|title=Upstroke wing flexion and the inertial cost of bat flight|journal=Proceedings of the Royal Society B: Biological Sciences|volume=279|issue=1740|pages=2945–2950|doi=10.1098/rspb.2012.0346|pmid=22496186|pmc=3385481}}</ref> The membranes are delicate, tearing easily,<ref name=ideas>{{cite journal |last=Roberts |first=W. C. |year=2006 |title=Facts and ideas from anywhere |journal=Proceedings (Baylor University. Medical Center) |volume=19 |issue=4 |pages=425–434 |pmid=17106509 |pmc=1618737 |doi=10.1080/08998280.2006.11928217 }}</ref> but can regrow, and small tears heal quickly.<ref name=ideas/><ref>{{cite journal |last=Irwin |first=N. |year=1997 |title=Wanted DNA samples from ''Nyctimene'' or ''Paranyctimene Bats'' |journal=The New Guinea Tropical Ecology and Biodiversity Digest |volume=3 |page=10 |url=http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf|url-status=dead|archive-url=https://web.archive.org/web/20080722140449/http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf|archive-date=22 July 2008}}</ref> The surface of the wings is equipped with touch-sensitive receptors on small bumps called [[Merkel cell]]s, also found on human fingertips. These sensitive areas are different in bats, as each bump has a tiny hair in the center, making it even more sensitive and allowing the bat to detect and adapt to changing airflow; the primary use is to judge the most efficient speed at which to fly, and possibly also to avoid [[Stall (fluid mechanics)|stalls]].<ref name=sterbing>{{cite journal |first1=S. |last1=Sterbing-D'Angelo |first2=M. |last2=Chadha |first3=C. |last3=Chiu |first4=B. |last4=Falk |first5=W. |last5=Xian |first6=J. |last6=Barcelo |first7=J. M. |last7=Zook |first8=C. F. |last8=Moss |year=2011 |title=Bat wing sensors support flight control |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=108 |number=27 |pages=11291–11296 |doi=10.1073/pnas.1018740108 |pmc=3131348|bibcode=2011PNAS..10811291S |pmid=21690408|doi-access=free }}</ref> Insectivorous bats may also use tactile hairs to help perform complex maneuvers to capture prey in flight.<ref name=marshall2015/>
{{anchor|Skin}}
The [[patagium]] is the wing membrane; it is stretched between the arm and finger bones, and down the side of the body to the hind limbs and tail. This skin membrane consists of [[connective tissue]], [[elastic fibre]]s, [[nerve]]s, [[muscle]]s, and [[blood vessel]]s. The muscles keep the membrane taut during flight.<ref name=Mehlhorn2013>{{cite book |title=Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths |last=Mehlhorn |first=H. |publisher=Springer |year=2013 |isbn=978-3-642-39333-4|pages=2–27}}</ref> The extent to which the tail of a bat is attached to a patagium can vary by species, with some having completely free tails or even no tails.<ref name=MacDonald/> The skin on the body of the bat, which has one layer of [[epidermis]] and [[dermis]], as well as [[hair follicle]]s, [[sweat gland]]s and a fatty subcutaneous layer, is very different from the skin of the wing membrane. Depending on the bat species the presence of [[hair follicle]]s and [[sweat gland]]s will vary in the [[patagium]].<ref>{{Cite journal |last1=Makanya |first1=Andrew N |last2=Mortola |first2=Jacopo P |date=December 2007 |title=The structural design of the bat wing web and its possible role in gas exchange |journal=Journal of Anatomy |volume=211 |issue=6 |pages=687–697 |doi=10.1111/j.1469-7580.2007.00817.x |issn=0021-8782 |pmc=2375846 |pmid=17971117}}</ref> This [[patagium]] is an extremely thin double layer of epidermis; these layers are separated by a [[connective tissue]] center, rich with [[collagen]] and [[elastic fiber]]s. In some bat species sweats glands will be present in between this [[connective tissue]].<ref>{{Cite journal |last1=Greville |first1=Lucas J |last2=Ceballos-Vasquez |first2=Alejandra |last3=Valdizón-Rodríguez |first3=Roberto |last4=Caldwell |first4=John R |last5=Faure |first5=Paul A |date=2018-05-16 |title=Wound healing in wing membranes of the Egyptian fruit bat (Rousettus aegyptiacus) and big brown bat (Eptesicus fuscus) |journal=Journal of Mammalogy |volume=99 |issue=4 |pages=974–982 |doi=10.1093/jmammal/gyy050 |issn=0022-2372|doi-access=free }}</ref> Furthermore, if hair follicles are present this supports the bat in order to adjust sudden flight maneuvers.<ref>{{Cite journal |last1=Sterbing-D'Angelo |first1=Susanne |last2=Chadha |first2=Mohit |last3=Chiu |first3=Chen |last4=Falk |first4=Ben |last5=Xian |first5=Wei |last6=Barcelo |first6=Janna |last7=Zook |first7=John M. |last8=Moss |first8=Cynthia F. |date=2011-07-05 |title=Bat wing sensors support flight control |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=108 |issue=27 |pages=11291–11296 |doi=10.1073/pnas.1018740108 |issn=0027-8424 |pmc=3131348 |pmid=21690408|bibcode=2011PNAS..10811291S |doi-access=free }}</ref><ref>{{Cite journal |last=Turner |first=Marian |date=2011-06-20 |title=Wing hairs help to keep bats in the air |url=https://www.nature.com/articles/news.2011.376 |journal=Nature |language=en |doi=10.1038/news.2011.376 |issn=1476-4687}}</ref> For bat embryos, [[apoptosis]] (programmed cell death) affects only the hindlimbs, while the forelimbs retain webbing between the digits that forms into the wing membranes.{{sfn|Fenton|Simmons|2015|pages=166–167}} Unlike birds, whose stiff wings deliver bending and torsional stress to the shoulders, bats have a flexible wing membrane that can resist only tension. To achieve flight, a bat exerts force inwards at the points where the membrane meets the skeleton, so that an opposing force balances it on the wing edges perpendicular to the wing surface. This adaptation does not permit bats to reduce their wingspans, unlike birds, which can partly fold their wings in flight, radically reducing the wing span and area for the upstroke and for gliding. Hence bats cannot travel over long distances as birds can.<ref name="pennycuick" />
Nectar- and pollen-eating bats can hover, in a similar way to [[hummingbird]]s. The sharp leading edges of the wings can create [[vortex|vortices]], which provide [[Vortex lift|lift]]. The vortex may be stabilized by the animal changing its wing curvatures.<ref>{{cite web |title=Leading Edge Vortex Allows Bats to Stay Aloft, Aerospace Professor Reports |publisher=USC Viterbi School of Engineering |date=29 February 2008 |url=https://viterbi.usc.edu/news/news/2008/leading-edge-vortex.htm}}</ref>
===Roosting and gaits===
[[File:Group flying dogs hanging in tree Sri Lanka.JPG|thumb|upright=1.3|Group of megabats roosting]]
When not flying, bats hang upside down from their feet, a posture known as roosting.<ref name=fenton1984/> The femurs are attached at the hips in a way that allows them to bend outward and upward in flight. The ankle joint can flex to allow the trailing edge of the wings to bend downwards. This does not permit many movements other than hanging or clambering up trees.<ref name=pennycuick/> Most megabats roost with the head tucked towards the belly, whereas most microbats roost with the neck curled towards the back. This difference is reflected in the structure of the [[cervical vertebra|cervical or neck vertebra]]e in the two groups, which are clearly distinct.<ref name=fenton1984>{{cite journal |last1=Fenton |first1=M. B. |last2=Crerar |first2=L. M. |title=Cervical Vertebrae in Relation to Roosting Posture in Bats |journal=Journal of Mammalogy |year=1984 |volume=65 |issue=3 |pages=395–403 |doi=10.2307/1381085 |jstor=1381085 }}</ref> Tendons allow bats to lock their feet closed when hanging from a roost. Muscular power is needed to let go, but not to grasp a perch or when holding on.{{sfn|Fenton|Simmons|2015|page=78}}
When on the ground, most bats can only crawl awkwardly. A few species such as the [[New Zealand lesser short-tailed bat]] and the [[common vampire bat]] are agile on the ground. Both species make lateral gaits (the limbs move one after the other) when moving slowly but vampire bats move with a bounding gait (all limbs move in unison) at greater speeds, the folded up wings being used to propel them forward. Vampire bat likely evolved these gaits to follow their hosts while short-tailed bats developed in the absence of terrestrial mammal competitors. Enhanced terrestrial locomotion does not appear to have reduced their ability to fly.<ref>{{cite journal |last1=Riskin |first1=D. K. |last2=Parsons |first2=S. |last3=Schutt |first3=W. A. Jr. |last4=Carter |first4=G. G. |last5=Hermanson |first5=J. W. |title=Terrestrial locomotion of the New Zealand short-tailed bat ''Mystacina tuberculata'' and the common vampire bat ''Desmodus rotundus'' |journal=Journal of Experimental Biology|year=2006|volume=209 |issue=9 |pages=1725–1736 |doi=10.1242/jeb.02186 |pmid=16621953 |s2cid=18305396 |url=http://eprints.qut.edu.au/79775/1/79775.pdf}}</ref>
===Internal systems===
Bats have an efficient [[circulatory system]]. They seem to make use of particularly strong venomotion, a rhythmic contraction of [[vein|venous]] wall muscles. In most mammals, the walls of the veins provide mainly passive resistance, maintaining their shape as deoxygenated blood flows through them, but in bats they appear to actively support blood flow back to the heart with this pumping action.<ref>{{cite journal |last=Jones |first=T. W. |year=1852 |title=Discovery That the Veins of the Bat's Wing (Which are Furnished with Valves) are Endowed with Rythmical {{sic}} Contractility, and That the Onward Flow of Blood is Accelerated by Each Contraction |jstor=108539 |journal=Philosophical Transactions of the Royal Society of London |volume=142 |pages=131–136 |doi=10.1098/rstl.1852.0011|s2cid=52937127 }}</ref><ref>{{Cite journal |last1=Dongaonkar |first1=R. M. |last2=Quick |first2=C. M. |last3=Vo |first3=J. C. |last4=Meisner |first4=J. K. |last5=Laine |first5=G. A. |last6=Davis |first6=M. J. |last7=Stewart |first7=R. H. |date=15 June 2012 |title=Blood flow augmentation by intrinsic venular contraction in vivo |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=302 |issue=12 |pages=R1436–R1442 |doi=10.1152/ajpregu.00635.2011 |pmc=3378342 |pmid=22513742}}</ref> Since their bodies are relatively small and lightweight, bats are not at risk of blood flow rushing to their heads when roosting.<ref>{{cite web |author=Langley, L. |date=29 August 2015|title=Bats and Sloths Don't Get Dizzy Hanging Upside Down – Here's Why |work=National Geographic |access-date=10 June 2017 |url=http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/|archive-url=https://web.archive.org/web/20150831022930/http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/|url-status=dead|archive-date=31 August 2015}}</ref>
Bats possess a highly adapted [[respiratory system]] to cope with the demands of powered flight, an energetically taxing activity that requires a large continuous throughput of oxygen. In bats, the relative alveolar surface area and pulmonary capillary blood volume are larger than in most other small quadrupedal mammals.<ref>{{Cite journal |title=What it takes to fly: the structural and functional respiratory refinements in birds and bats |url=http://jeb.biologists.org/content/203/20/3045 |journal=Journal of Experimental Biology |year=2000 |pmid=11003817 |pages=3045–3064 |volume=203 |issue=20 |first=J. N. |last=Maina|doi=10.1242/jeb.203.20.3045 |doi-access=free }}</ref> During flight the respiratory cycle has a one-to-one relationship with the wing-beat cycle.<ref>{{cite journal |last1=Suthers |first1=Roderick A. |last2=Thomas |first2=Steven P |last3=Suthers |first3=Barbara A |title=Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat |journal=Journal of Experimental Biology |volume=56 |date=1972 |issue=56 |pages=37–48 |doi=10.1242/jeb.56.1.37 |url=https://jeb.biologists.org/content/56/1/37 |access-date=9 August 2019|doi-access=free }}</ref> Because of the restraints of the mammalian lungs, bats cannot maintain high-altitude flight.<ref name=pennycuick>{{cite book |chapter-url={{google books |plainurl=yes |id=KG86AgWwFEUC |page=136}} |first=C. J. |last=Pennycuick |year=2008 |title=Modelling the Flying Bird |chapter=Bats |publisher=Elsevier |isbn=978-0-12-374299-5 |pages=136–143}}</ref>
[[File:Flying fox at botanical gardens in Sydney (cropped).jpg|thumb|upright|The wings are highly vascularized membranes, the larger blood vessels visible against the light.<ref name=benhamo/>]]
It takes a lot of energy and an efficient circulatory system to work the flight muscles of bats. Energy supply to the muscles engaged in flight requires about double the amount compared to the muscles that do not use flight as a means of mammalian locomotion. In parallel to energy consumption, blood oxygen levels of flying animals are twice as much as those of their terrestrially locomoting mammals. As the blood supply controls the amount of oxygen supplied throughout the body, the [[circulatory system]] must respond accordingly. Therefore, compared to a terrestrial mammal of the same relative size, the bat's [[heart]] can be up to three times larger, and pump more blood.<ref name="Jürgens Bartels Bartels 1981 pp. 243–260">{{cite journal | last1=Jürgens | first1=Klaus Dieter | last2=Bartels | first2=Heinz | last3=Bartels | first3=Rut | title=Blood oxygen transport and organ weights of small bats and small non-flying mammals | journal=Respiration Physiology | volume=45 | issue=3 | year=1981 | doi=10.1016/0034-5687(81)90009-8 | pmid=7330485 | pages=243–260}}</ref> Cardiac output is directly derived from heart rate and [[stroke volume]] of the blood;<ref name="Martini 2015">{{cite book | last=Martini | first=Frederic | title=Visual anatomy & physiology | publisher=Pearson | year=2015 | isbn=978-0-321-91874-1 | oclc=857980151 | pages=704–705}}</ref> an active [[microbat]] can reach a heart rate of 1000 [[beats per minute]].<!--<ref name="Kunz1982">{{Cite book |title=Ecology of Bats |last=Kunz |first=Thomas |publisher=Plenum |year=1982 |isbn=978-0-306-40950-9 |pages=MISSING}}</ref>--><ref name="WANG2009">{{cite journal | last1=Wang| first1=LI| last2=Li | first2=Gang | last3=Wang| first3=Jinhong | last4=Ye | first4=Shaohui | last5=Jones | first5=Gareth | last6=Zhang | first6=Shuyi | title=Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera) | journal=Genetics Research | volume=91 | issue=2 | pages=101–109 | year=2009 | doi=10.1017/s0016672309000032 | pmid=19393126 | doi-access=free }}</ref>
With its extremely thin membranous tissue, a bat's wing can significantly contribute to the organism's total gas exchange efficiency.<ref name="Makanya2007">{{Cite journal |last1=Makanya |first1=A. N. |last2=Mortola |first2=J. P. |year=2007 |title=The structural design of the bat wing web and its possible role in gas exchange |journal=Journal of Anatomy |volume=211 |issue=6 |pages=687–697 |doi=10.1111/j.1469-7580.2007.00817.x |pmc=2375846 |pmid=17971117}}</ref> Because of the high energy demand of flight, the bat's body meets those demands by exchanging gas through the patagium of the wing. When the bat has its wings spread it allows for an increase in surface area to volume ratio. The surface area of the wings is about 85% of the total body surface area, suggesting the possibility of a useful degree of gas exchange.<ref name=Makanya2007 /> The subcutaneous vessels in the membrane lie very close to the surface and allow for the diffusion of oxygen and carbon dioxide.<ref>{{Cite journal |last1=Holbrook |first1=K. A. |last2=Odland |first2=G. F. |year=1978 |title=A collagen and elastic network in the wing of the bat |journal=Journal of Anatomy |volume=126 |issue=Pt 1 |pages=21–36 |pmc=1235709 |pmid=649500}}</ref>
The [[digestive system]] of bats has varying adaptations depending on the species of bat and its diet. As in other flying animals, food is processed quickly and effectively to keep up with the energy demand. Insectivorous bats may have certain [[digestive enzyme]]s to better process insects, such as [[chitinase]] to break down [[chitin]], which is a large component of insects.<ref>{{cite journal |first1=S. |last1=Strobel |first2=A. |last2=Roswag |first3=N. I. |last3=Becker |first4=T. E. |last4=Trenczek |first5=J. A. |last5=Encarnação |year=2013 |title=Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase |journal=PLOS ONE|volume=8 |issue=9 |pages=e72770 |doi=10.1371/journal.pone.0072770 |pmid=24019876 |pmc=3760910 |bibcode=2013PLoSO...872770S |doi-access=free }}</ref> Vampire bats, probably due to their diet of blood, are the only vertebrates that do not have the enzyme [[maltase]], which breaks down [[malt sugar]], in their intestinal tract. Nectivorous and frugivorous bats have more maltase and [[sucrase]] enzymes than insectivorous, to cope with the higher sugar contents of their diet.<ref name=schondube01>{{cite journal |last1=Schondube |first1=J. E. |last2=Herrera-M |first2=L. Gerardo |last3=Martínez del Rio |first3=C. |year=2001 |title=Diet and the evolution of digestion and renal function in phyllostomid bats |journal=Zoology |volume=104 |issue=1 |pages=59–73 |url=http://www.uwyo.edu/cmdelrio/site/publications_files/bats,%20isotopes,%20and%20kidneys.pdf |doi=10.1078/0944-2006-00007 |pmid=16351819}}</ref>
The adaptations of the [[kidney]]s of bats vary with their diets. Carnivorous and vampire bats consume large amounts of protein and can output concentrated [[urine]]; their kidneys have a thin cortex and long [[renal papilla]]e. Frugivorous bats lack that ability and have kidneys adapted for [[electrolyte]]-retention due to their low-electrolyte diet; their kidneys accordingly have a thick cortex and very short conical papillae.<ref name="schondube01" /> Bats have higher metabolic rates associated with flying, which lead to an increased respiratory water loss. Their large wings are composed of the highly vascularized membranes, increasing the surface area, and leading to [[cutaneous]] evaporative water loss.<ref name=benhamo>{{Cite journal |last1=Ben-Hamo |first1=Miriam |last2=Muñoz-Garcia |first2=Agustí |last3=Larrain |first3=Paloma |last4=Pinshow |first4=Berry |last5=Korine |first5=Carmi |last6=Williams |first6=Joseph B. |date=2016-06-29 |title=The cutaneous lipid composition of bat wing and tail membranes: a case of convergent evolution with birds |journal=Proceedings of the Royal Society B: Biological Sciences |volume=283 |issue=1833 |pages=20160636 |doi=10.1098/rspb.2016.0636 |pmc=4936036 |pmid=27335420}}</ref> Water helps maintain their [[electrolyte imbalance|ionic balance]] in their blood, [[thermoregulation]] system, and removal of wastes and toxins from the body via urine. They are also susceptible to [[Blood urea nitrogen|blood urea]] poisoning if they do not receive enough fluid.<ref>{{Cite report |last1=Lyons |first1=Rachel |last2=Wimberley |first2=Trish |date=March 2014 |title=Introduction to the Care and Rehabilitation of Microbats |url=http://www.bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf |publisher=Wildcare Australia |version=3.0 |page=12 |access-date=5 May 2018 |archive-date=10 March 2018 |archive-url=https://web.archive.org/web/20180310034326/http://bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf |url-status=dead }}</ref>
The structure of the uterine system in female bats can vary by species, with some having two [[uterine horn]]s while others have a single mainline chamber.{{sfn|Fenton|Simmons|2015|page=164}}
===Senses===
====Echolocation====
{{Main|Animal echolocation#Bats}}
{{Listen|filename=Pipistrellus.ogg|title=''Pipistrellus'' pulses|description=Time-expanded recording of ''Pipistrellus pipistrellus'' bat echolocation calls and social call}}
{{Listen|filename=Bat feeding buzz.wav|title=Feeding buzz|description=Time-expanded recording of the feeding buzz of a bat homing in on its prey}}
Microbats and a few megabats emit ultrasonic sounds to produce echoes. Sound intensity of these echos are dependent on subglottic pressure. The bats' cricothyroid muscle controls the orientation pulse frequency, which is an important function. This muscle is located inside the larynx and it is the only tensor muscle capable of aiding phonation.<ref>{{cite journal |last1=Suthers |first1=Roderick |last2=Fattu |first2=James |title=Mechanisms of Sound Production by Echolocating Bats |journal=American Zoologist |date=1973 |volume=13 |issue=4 |pages=1215–1226 |doi=10.1093/icb/13.4.1215|doi-access=free }}</ref> By comparing the outgoing pulse with the returning echoes, bats can gather information on their surroundings. This allows them to detect prey in darkness.{{sfn|Fenton|Simmons|2015|pages=82–84}} Some bat calls can reach 140 [[decibels]].<ref>{{cite journal |last1=Surlykke |first1=A. |last2=Elisabeth |first2=K. V. |year=2008 |title=Echolocating bats Cry Out Loud to Detect Their Prey |journal=PLOS ONE|volume=3 |issue=4 |page=e2036 |doi=10.1371/journal.pone.0002036 |pmc=2323577 |bibcode=2008PLoSO...3.2036S |pmid=18446226|doi-access=free }}</ref> Microbats use their [[larynx]] to emit echolocation signals through the mouth or the nose.<ref>{{cite journal|last1=Teeling|first1=E. C.|last2=Madsen|first2=O|last3=Van Den Bussche|first3=R. A.|last4=de Jong|first4=W. W.|last5=Stanhope|first5=M. J.|last6=Springer|first6=M. S.|year=2002|title=Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats|journal=PNAS|volume=99|issue=3|pages=1431–1436|doi=10.1073/pnas.022477199|pmid=11805285|pmc=122208|bibcode=2002PNAS...99.1431T|doi-access=free}}</ref> Microbat calls range in frequency from 14,000 to well over 100,000 Hz, extending well beyond the range of human hearing (between 20 and 20,000 Hz).<ref name=muller2004/> Various groups of bats have evolved fleshy extensions around and above the nostrils, known as [[nose-leaf|nose-leaves]], which play a role in sound transmission.{{sfn|Fenton|Simmons|2015|page=31}}
[[File:Animal echolocation.svg|thumb|left|upright=1.3|Principle of bat echolocation: orange is the call and green is the echo.]]
In low-duty cycle echolocation, bats can separate their calls and returning echoes by time. They have to time their short calls to finish before echoes return.<ref name="Jones2007"/> The delay of the returning echoes allows the bat to estimate the range to their prey.<ref name=muller2004/> In high-duty cycle echolocation, bats emit a continuous call and separate pulse and echo in frequency using the [[Doppler effect]] of their motion in flight. The shift of the returning echoes yields information relating to the motion and location of the bat's prey. These bats must deal with changes in the Doppler shift due to changes in their flight speed. They have adapted to change their pulse emission frequency in relation to their flight speed so echoes still return in the optimal hearing range.<ref name="Jones2007">{{cite journal |author1=Jones, G. |author2=Holderied, M. W. |title=Bat echolocation calls: adaptation and convergent evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |year=2007 |pages=905–912 |doi=10.1098/Rspb.2006.0200 |pmid=17251105 |issue=1612 |pmc=1919403}}</ref><ref>{{cite journal|last1=Fenton|first1=M. B.|last2=Faure|first2=P. A.|last3=Ratcliffe|first3=J. M.|year=2012|title=Evolution of high duty cycle echolocation in bats|journal=The Journal of Experimental Biology|volume=215|issue=17|pages=2935–2944|doi=10.1242/jeb.073171|pmid=22875762|s2cid=405317|doi-access=free}}</ref>
In addition to echolocating prey, bat ears are sensitive to sounds made by their prey, such as the fluttering of moth wings. The complex geometry of ridges on the inner surface of bat ears helps to sharply focus echolocation signals, and to passively listen for any other sound produced by the prey. These ridges can be regarded as the acoustic equivalent of a [[Fresnel lens]], and exist in a large variety of unrelated animals, such as the [[aye-aye]], [[lesser galago]], [[bat-eared fox]], [[mouse lemur]], and others.<ref>{{cite journal |doi=10.2307/3546476 |last1=Pavey |first1=C. R. |last2=Burwell |first2=C. J. |year=1998 |title=Bat Predation on Eared Moths: A Test of the Allotonic Frequency Hypothesis |journal=Oikos |volume=81 |issue=1 |pages=143–151 |jstor=3546476 |bibcode=1998Oikos..81..143P }}</ref><ref>{{cite web|url=http://apps.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf|archive-url=https://web.archive.org/web/20200325122845/http://www.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf|url-status=live|archive-date=25 March 2020|title=The Bat's Ear as a Diffraction Grating|first=W. A.|last=Sowell|year=1983|publisher=Air Force Institute of Technology}}</ref><ref>{{cite journal |pmid=19425684 |doi=10.1121/1.3097500 |volume=125 |issue=5 |title=Model predicts bat pinna ridges focus high frequencies to form narrow sensitivity beams |year=2009 |journal= The Journal of the Acoustical Society of America|pages=3454–3459 |bibcode=2009ASAJ..125.3454K |last1=K. |first1=Roman}}</ref> Bats can estimate the elevation of their target using the [[interference pattern]]s from the echoes reflecting from the [[tragus (ear)|tragus]], a flap of skin in the external ear.<ref name=muller2004>{{cite journal |last=Muller |first=R. |year=2004 |title=A numerical study of the role of the tragus in the big brown bat |journal= The Journal of the Acoustical Society of America|volume=116 |pages=3701–3712 |doi=10.1121/1.1815133 |pmid=15658720 |issue=6 |bibcode=2004ASAJ..116.3701M }}</ref>
[[File:Bertholdiatrigona.jpg|thumb|The [[Bertholdia trigona|tiger moth]] (''Bertholdia trigona'') can [[echolocation jamming|jam]] bat echolocation.<ref name=corcoran2009/><ref name=hristov2005/>]]
By repeated scanning, bats can mentally construct an accurate image of the environment in which they are moving and of their prey.<ref>{{cite journal |pmid=19282498 |doi=10.1242/jeb.024620 |volume=212 |issue=Pt 7 |title=Acoustic scanning of natural scenes by echolocation in the big brown bat, ''Eptesicus fuscus'' |pmc=2726860 |year=2009 |journal=Journal of Experimental Biology |pages=1011–1020 |last1=Surlykke |first1=A. |last2=Ghose |first2=K. |last3=Moss |first3=C. F.}}</ref> Some species of moth have exploited this, such as the [[Arctiidae|tiger moths]], which produces [[aposematic]] ultrasound signals to warn bats that they are chemically protected and therefore distasteful.<ref name=corcoran2009>{{cite journal|last1=Corcoran |first1=A. J. |first2=J. R. |last2=Barber |first3=W. E. |last3=Conner |s2cid=206520028 |title=Tiger moth jams bat sonar |journal=Science |year=2009 |volume=325 |pages=325–327 |doi=10.1126/science.1174096|issue=5938 |pmid=19608920 |bibcode=2009Sci...325..325C }}</ref><ref name=hristov2005>{{cite journal |last1=Hristov |first1=N. I. |first2=W. E. |last2=Conner |title=Sound strategy: acoustic aposematism in the bat–tiger moth arms race |journal=Naturwissenschaften |year=2005 |volume=92 |pages=164–169 |pmid=15772807 |doi=10.1007/s00114-005-0611-7 |issue=4 |bibcode=2005NW.....92..164H|s2cid=18306198 }}</ref> Moth species including the tiger moth can produce signals to [[Echolocation jamming|jam bat echolocation]]. Many moth species have a hearing organ called a [[tympanal organ|tympanum]], which responds to an incoming bat signal by causing the moth's flight muscles to twitch erratically, sending the moth into random evasive manoeuvres.<ref>{{cite book |first1=J. |last1=Strauß |first2=R. |last2=Lakes-Harlan |series=Animal Signals and Communication |volume=1 |year=2014 |title=Insect Hearing and Acoustic Communication |chapter=Evolutionary and Phylogenetic Origins of Tympanal Hearing Organs in Insects |editor-first=B. |editor-last=Hedwig |publisher=Springer |isbn=978-3-642-40462-7 |doi=10.1007/978-3-642-40462-7_2 |pages=5–26}}</ref><ref>{{cite book |editor1-first=R. R. |editor1-last=Hoy |editor2-first=R. R. |editor2-last=Fay |editor3-first=A. N. |editor3-last=Popper |first=J. H. |last=Fullard |year=1998|title=Comparative Hearing: Insects |chapter=Moth Ears and Bat Calls: Coevolution or Coincidence? |series=Springer Handbook of Auditory Research |publisher=Springer |chapter-url={{google books |plainurl=yes |id=T-3jBwAAQBAJ |pages=279–326}} |isbn=978-1-4612-6828-4}}</ref><ref>{{cite journal |last1=Takanashi |first1=Takuma |last2=Nakano |first2=Ryo |last3=Surlykke |first3=A. |last4=Tatsuta |first4=H. |last5=Tabata |first5=J. |last6=Ishikawa |first6=Y. |last7=Skals |first7=N. |year= 2010|title=Variation in Courtship Ultrasounds of Three Ostrinia Moths with Different Sex Pheromones |journal=PLOS ONE|volume=5 |issue=10 |pages=e13144 |doi=10.1371/journal.pone.0013144|pmid=20957230 |bibcode=2010PLoSO...513144T |pmc=2949388|doi-access=free }}</ref>
====Vision====
The eyes of most microbat species are small and poorly developed, leading to poor [[visual acuity]], but no species is blind.<ref>{{cite web |author=Sophasarun, N. |title=Experts debunk bats' bad rap |work=Online extra |publisher=National Geographic |url=http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html |archive-url=https://web.archive.org/web/20071230022439/http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html |url-status=dead |archive-date=30 December 2007 |access-date=14 November 2017}}</ref> Most microbats have [[mesopic vision]], meaning that they can detect light only in low levels, whereas other mammals have [[photopic vision]], which allows colour vision. Microbats may use their vision for orientation and while travelling between their roosting grounds and feeding grounds, as echolocation is effective only over short distances. Some species can detect [[ultraviolet]] (UV). As the bodies of some microbats have distinct coloration, they may be able to discriminate colours.<ref name=molecule/><ref>{{cite journal |first1=B. |last1=Müller |first2=M. |last2=Glösmann |first3=L.|last3=Peichl |first4=G. C. |last4=Knop |first5=C. |last5=Hagemann |first6=J. |last6=Ammermüller |year=2009 |title=Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors |journal=PLOS ONE|volume=4 |issue=7 |pages=e6390 |doi=10.1371/journal.pone.0006390 |pmid=19636375 |pmc=2712075|bibcode=2009PLoSO...4.6390M |doi-access=free }}</ref><ref>{{cite journal|first1=Y.-Y. |last1=Shen |first2=J. |last2=Liu |first3=D. M. |last3=Irwin |first4=Y.-P. |last4=Zhang |year=2010 |title=Parallel and Convergent Evolution of the Dim-Light Vision Gene ''RH1'' in Bats (Order: Chiroptera) |journal=PLOS ONE|volume=5 |issue=1 |pages=e8838 |doi=10.1371/journal.pone.0008838 |pmid=20098620 |pmc=2809114|bibcode=2010PLoSO...5.8838S |doi-access=free }}</ref><ref name=wang2004/>
Megabat species often have eyesight as good as, if not better than, human vision. Their eyesight is adapted to both night and daylight vision, including some colour vision.<ref name=wang2004>{{cite journal |last1=Wang |first1=D. |last2=Oakley |first2=T. |last3=Mower |first3=J. |last4=Shimmin |first4=L. C. |last5=Yim |first5=S. |last6=Honeycutt |first6=R. L. |last7=Tsao |first7=H. |last8=Li |first8=W. H. |year=2004 |title=Molecular evolution of bat color vision genes |journal=Molecular Biology and Evolution |volume=21 |issue=2 |pages=295–302 |doi=10.1093/molbev/msh015 |pmid=14660703|doi-access=free }}</ref>
====Magnetoreception====
Microbats make use of [[magnetoreception]], in that they have a high sensitivity to the [[Earth's magnetic field]], as birds do. Microbats use a polarity-based compass, meaning that they differentiate north from south, unlike birds, which use the strength of the magnetic field to differentiate [[latitude]]s, which may be used in long-distance travel. The mechanism is unknown but may involve [[magnetite]] particles.<ref>{{cite journal |first1=Y. |last1=Wang |first2=Y. |last2=Pan |first3=S. |last3=Parsons |first4=M. |last4=Walker |first5=S. |last5=Zhang |year=2007 |title=Bats Respond to Polarity of a Magnetic Field |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |issue=1627 |pages=2901–2905 |doi=10.1098/rspb.2007.0904 |pmc=2288691 |pmid=17848365}}</ref><ref>{{cite journal |first1=L.-X. |last1=Tian |first2=Y.-X. |last2=Pan |first3=W. |last3=Metzner |first4=J.-S. |last4=Zhang |first5=B.-F. |last5=Zhang |year=2015 |title=Bats Respond to Very Weak Magnetic Fields |journal=PLOS ONE|volume=10 |issue=4 |pages=e0123205 |doi=10.1371/journal.pone.0123205 |pmid=25922944 |pmc=4414586 |bibcode=2015PLoSO..1023205T|doi-access=free }}</ref>
===Thermoregulation===
[[File:wiki bat.jpg|thumb|right|upright=1.2|Thermographic image of a bat using trapped air as insulation]]
Most bats are [[homeothermic]] (having a stable body temperature), the exception being the vesper bats (Vespertilionidae), the horseshoe bats (Rhinolophidae), the free-tailed bats (Molossidae), and the bent-winged bats (Miniopteridae), which extensively use [[heterothermy]] (where body temperature can vary).<ref name="Nowack 2017">{{cite journal| last1=Nowack| first1= J.| last2= Stawski| first2= C.| last3= Geiser| first3= F.| date=2017| title= More functions of torpor and their roles in a changing world| journal= Journal of Comparative Physiology B| volume= 187| issue=5–6| pages= 889–897| doi= 10.1007/s00360-017-1100-y| pmid= 28432393| pmc= 5486538}}</ref><ref>{{Cite journal |title=The importance of temporal heterothermy in bats |journal=J Zool |last1=Stawski |first1=C. |volume=292 |pages=86–100 |last2=Willis |first2=C. K. R. |doi=10.1111/jzo.12105 |last3=Geiser |first3=F. |date=2014|issue=2 |doi-access=free }}</ref> Compared to other mammals, bats have a high [[thermal conductivity]]. The wings are filled with blood vessels, and lose body heat when extended. At rest, they may wrap their wings around themselves to trap a layer of warm air. Smaller bats generally have a higher metabolic rate than larger bats, and so need to consume more food in order to maintain homeothermy.{{sfn|Altringham|2011|pages=99–100}}
Bats may avoid flying during the day to prevent overheating in the sun, since their dark wing-membranes absorb solar radiation. Bats may not be able to dissipate heat if the ambient temperature is too high;<ref>{{cite journal |first1=C. C. |last1=Voigt |first2=D. |last2=Lewanzik |year=2011 |title=Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats |journal=Proceedings of the Royal Society B: Biological Sciences |volume=278 |issue=1716 |pages=2311–2317 |doi=10.1098/rspb.2010.2290 |pmc=3119008 |pmid=21208959}}</ref> they use saliva to cool themselves in extreme conditions.<ref name=pennycuick/> Among megabats, the flying fox ''[[Pteropus hypomelanus]]'' uses saliva and wing-fanning to cool itself while roosting during the hottest part of the day.<ref name="Ochoa-AcuñaKunz1999">{{cite journal |last1=Ochoa-Acuña |first1=H. |last2=Kunz |first2=T.H. |title=Thermoregulatory behavior in the small island flying fox, ''Pteropus hypomelanus'' (Chiroptera: Pteropodidae) |journal=Journal of Thermal Biology |volume=24 |issue=1 |year=1999 |pages=15–20 |doi=10.1016/S0306-4565(98)00033-3|citeseerx=10.1.1.581.38 }}</ref> Among microbats, the [[Yuma myotis]] (''Myotis yumanensis''), the Mexican free-tailed bat, and the [[pallid bat]] (''Antrozous pallidus'') cope with temperatures up to {{cvt|45|C|F}} by panting, salivating, and licking their fur to promote evaporative cooling; this is sufficient to dissipate twice their metabolic heat production.<ref name="LichtLeitner1967">{{cite journal |last1=Licht |first1=Paul |last2=Leitner |first2=Philip |title=Physiological responses to high environmental temperatures in three species of microchiropteran bats |journal=Comparative Biochemistry and Physiology |volume=22 |issue=2 |year=1967 |pages=371–387 |doi=10.1016/0010-406X(67)90601-9}}</ref>
Bats also possess a system of [[sphincter]] valves on the arterial side of the vascular network that runs along the edge of their wings. When fully open, these allow oxygenated blood to flow through the [[capillary]] network across the wing membrane; when contracted, they [[shunt (medical)|shunt]] flow directly to the veins, bypassing the wing capillaries. This allows bats to control how much heat is exchanged through the flight membrane, allowing them to release heat during flight. Many other mammals use the capillary network in oversized ears for the same purpose.<ref>{{cite book |chapter-url={{google books|plainurl=yes|id=gI-Sly7oq7QC|page=43}} |chapter=The Circulatory and Respiratory Systems |title=The Biology of Bats |last=Neuweiler |first=Gerhard |year=2000 |publisher=Oxford University Press |isbn=978-0-1950-9951-5 |pages=43–62}}</ref>
====Torpor====
[[File:Tri-colored bat in torpor.JPG|thumb|upright|A [[tricoloured bat]] (''Perimyotis subflavus'') in [[torpor]]]]
[[Torpor]], a state of decreased activity where the body temperature and [[metabolism]] decreases, is especially useful for bats, as they use a large amount of energy while active, depend upon an unreliable food source, and have a limited ability to store fat. They generally drop their body temperature in this state to {{convert|6|–|30|C|F}}, and may reduce their energy expenditure by 50 to 99%.<ref>{{cite journal |last1=Geiser |first1=F. |last2=Stawski |first2=C. |year=2011 |title=Hibernation and Torpor in Tropical and Subtropical Bats in Relation to Energetics, Extinctions, and the Evolution of Endothermy |journal=Integrative and Comparative Biology |volume=51 |issue=3 |pages=337–338 |doi=10.1093/icb/icr042 |pmid=21700575|doi-access= }}</ref> Tropical bats may use it to avoid predation, by reducing the amount of time spent on foraging and thus reducing the chance of being caught by a predator.<ref>{{cite journal |first1=C. |last1=Stawski |first2=F.|last2=Geiser|year=2010|title=Fat and Fed: Frequent Use of Summer Torpor in a Subtropical Bat |journal=Naturwissenschaften |volume=97|issue=1|pages=29–35 |doi=10.1007/s00114-009-0606-x |pmid=19756460 |bibcode=2010NW.....97...29S|s2cid=9499097 }}</ref> Megabats were generally believed to be homeothermic, but three species of small megabats, with a mass of about {{convert|50|g|oz|frac=4|abbr=off}}, have been known to use torpor: the [[common blossom bat]] (''Syconycteris australis''), the [[long-tongued nectar bat]] (''Macroglossus minimus''), and the [[eastern tube-nosed bat]] (''Nyctimene robinsoni''). Torpid states last longer in the summer for megabats than in the winter.<ref>{{cite book |url={{google books|plainurl=yes|id=nA0TDAAAQBAJ|page=14}} |first1=A. |last1=Zubaid |first2=G. F. |last2=McCracken |first3=T. |last3=Kunz |year=2006 |title=Functional and Evolutionary Ecology of Bats |publisher=Oxford University Press |pages=14–16 |isbn=978-0-19-515472-6}}</ref>
During [[hibernation]], bats enter a torpid state and decrease their body temperature for 99.6% of their hibernation period; even during periods of arousal, when they return their body temperature to normal, they sometimes enter a shallow torpid state, known as "heterothermic arousal".<ref>{{cite journal |first=K. |last=Knight |year=2012 |title=Bats Use Torpor to Minimise Costs |journal=Journal of Experimental Biology |volume=215 |issue=12 |pages=iii |doi=10.1242/jeb.074823|doi-access=free }}</ref> Some bats [[aestivation|become dormant during higher temperatures]] to keep cool in the summer months.<ref>{{cite journal |first1=A. |last1=Bondarenco |first2=G. |last2=Körtner |first3=F. |last3=Geiser |year=2016 |title=How to Keep Cool in a Hot Desert: Torpor in Two Species of Free-Ranging Bats in Summer |journal=Temperature |volume=6 |issue=3 |pages=476–483 |doi=10.1080/23328940.2016.1214334 |pmc=5079220 |pmid=28349087}}</ref>
Heterothermic bats during long migrations may fly at night and go into a torpid state roosting in the daytime. Unlike migratory birds, which fly during the day and feed during the night, nocturnal bats have a conflict between travelling and eating. The energy saved reduces their need to feed, and also decreases the duration of migration, which may prevent them from spending too much time in unfamiliar places, and decrease predation. In some species, pregnant individuals may not use torpor.<ref>{{cite journal |first1=L. P. |last1=McGuire |first2=K. A. |last2=Jonassen |first3=C. G. |last3=Guglielmo|year=2014 |title=Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy |journal=PLOS ONE|volume=9 |issue=12 |pages=e115724 |doi=10.1371/journal.pone.0115724 |pmid=25551615|pmc=4281203 |bibcode=2014PLoSO...9k5724M|doi-access=free }}</ref><ref>{{cite journal |first1=I. M. |last1=Hamilton |first2=R. M. R. |last2=Barclay |year=1994 |title=Patterns of daily torpor and day-roost selection by male and female big brown bats (''Eptesicus fuscus'') |journal=Canadian Journal of Zoology |volume=72 |issue=4 |pages=744 |doi=10.1139/z94-100|url=https://zenodo.org/record/8204807 }}</ref>
===Size===
The smallest bat is [[Kitti's hog-nosed bat]] (''Craseonycteris thonglongyai''), which is {{convert|29|–|34|mm|in|frac=8|abbr=on}} long with a {{convert|150|mm|in|frac=2|adj=on}} wingspan and weighs {{convert|2|–|2.6|g|oz|frac=32|abbr=on}}.<ref name=Edge>{{cite web |url=http://www.edgeofexistence.org/mammals/species_info.php?id=49 |title=Bumblebee bat (''Craseonycteris thonglongyai'') |work=[[EDGE Species]] |access-date=10 April 2008 |archive-date=19 August 2016 |archive-url=https://web.archive.org/web/20160819233333/http://www.edgeofexistence.org/mammals/species_info.php?id=49 |url-status=dead }}</ref> It is also arguably the smallest [[extant taxon|extant]] species of mammal, next to the [[Etruscan shrew]].<ref>{{cite web |title=Kitti's Hog-Nosed Bat Is World's Smallest Mammal |date=3 December 2012 |publisher=SciTechDaily |url=https://scitechdaily.com/kittis-hog-nosed-bat-is-worlds-smallest-mammal/ |access-date=1 November 2017}}</ref> The largest bats are a few species of ''[[Pteropus]]'' megabats and the [[giant golden-crowned flying fox]], (''Acerodon jubatus''), which can weigh {{convert|1.6|kg|lb|frac=4|abbr=on}} with a wingspan of {{convert|1.7|m|ftin|abbr=on}}.<ref>Nowak, R. M., editor (1999). ''Walker's Mammals of the World.'' Vol. 1. 6th edition. pp. 264–271. {{ISBN|0-8018-5789-9}}</ref> Larger bats tend to use lower frequencies and smaller bats higher for echolocation; high-frequency echolocation is better at detecting smaller prey. Small prey may be absent in the diets of large bats as they are unable to detect them.<ref name=gonsalves>{{cite journal |first1=L. |last1=Gonsalves |first2=B. |last2=Bicknell |first3=B.|last3=Law |first4=C. |last4=Webb |first5=V. |last5=Monamy |year=2013 |title=Mosquito Consumption by Insectivorous Bats: Does Size Matter? |journal=PLOS ONE|volume=8 |issue=10 |pages=e77183 |doi=10.1371/journal.pone.0077183 |pmid=24130851 |pmc=3795000 |bibcode=2013PLoSO...877183G|doi-access=free }}</ref> The adaptations of a particular bat species can directly influence what kinds of prey are available to it.<ref>{{cite journal |first1=D. K. N. |last1=Dechmann |first2=K. |last2=Safi |first3=M. J.|last3=Vonhof |year=2006 |title=Matching Morphology and Diet in the Disc-Winged Bat ''Thyroptera tricolor'' (Chiroptera) |journal=Journal of Mammalogy |volume=87 |issue=5 |pages=1013–1019 |doi=10.1644/05-MAMM-A-424R2.1|doi-access=free }}</ref>
==Ecology==
[[File:Common tent-making bats.JPG|thumb|left|[[Tent-making bat]]s (''Uroderma bilobatum'') in Costa Rica]]
Flight has enabled bats to become one of the most widely distributed groups of mammals.<ref>{{cite journal |last1=Thomas |first1=S. P. |last2=Suthers |first2=R. A. |year=1972 |title=Physiology and energetics of bat flight |journal=Journal of Experimental Biology |volume=57 |issue=2 |pages=317–335 |doi=10.1242/jeb.57.2.317 |url=http://jeb.biologists.org/content/jexbio/57/2/317.full.pdf}}</ref> Apart from the Arctic, the Antarctic and a few isolated oceanic islands, bats exist in almost every habitat on Earth.<ref>{{cite web |title=Bats of the World |url=http://www.bats.org.uk/pages/bats_of_the_world.html |publisher=Bat Conservation Trust |access-date=16 January 2011
|archive-url=https://web.archive.org/web/20110105143810/http://www.bats.org.uk/pages/bats_of_the_world.html |archive-date=5 January 2011 |url-status=live}}</ref> Tropical areas tend to have more species than temperate ones.{{sfn|Fenton|Simmons|2015|pages=32}} Different species select different habitats during different seasons, ranging from seasides to mountains and deserts, but they require suitable roosts. Bat roosts can be found in hollows, crevices, foliage, and even human-made structures, and include "tents" the bats construct with leaves.<ref>{{cite book |title=Grzimek's Animal Life Encyclopedia: Vol 13 Mammals II |year=2003 |edition=2nd |page=311 |isbn=978-0-7876-5362-0}}</ref> Megabats generally roost in trees.{{sfn|Altringham|2011|page=21}} Most microbats are [[Nocturnality|nocturnal]]<ref name="bats">{{cite web |url=http://www.si.edu/Encyclopedia_SI/nmnh/batfacts.htm |publisher=Smithsonian Institution |title=The Art and Science of Bats|date=7 December 2010}}</ref> and megabats are typically [[Diurnal cycle|diurnal]] or [[crepuscular]].<ref name="Schwab"/><ref>{{cite book |author=Alexander, D. E. |year=2015 |title=On the Wing: Insects, Pterosaurs, Birds, Bats and the Evolution of Animal Flight |publisher=Oxford University Press |page=137 |isbn=978-0199996773}}</ref> Microbats are known to exhibit diurnal behaviour in temperate regions during summer when there is insufficient night time to forage,<ref>{{cite journal |last1=Speakman |first1=J. R. |title=The function of daylight flying in British bats |journal=Journal of Zoology |date=1990 |volume=220 |issue=1 |pages=101–113 |doi=10.1111/j.1469-7998.1990.tb04296.x}}</ref><ref>{{cite journal |last1=Speakman |first1=J. R. |last2=Rydell |first2=J. |last3=Webb |first3=P. I. |last4=Hayes |first4=J. P. |last5=Hays |first5=G. C. |last6=Hulbert |first6=I. a. R. |last7=McDevitt |first7=R. M. |title=Activity patterns of insectivorous bats and birds in northern Scandinavia (69° N), during continuous midsummer daylight |journal=Oikos |date=2000 |volume=88 |issue=1 |pages=75–86 |doi=10.1034/j.1600-0706.2000.880109.x|bibcode=2000Oikos..88...75S }}</ref> and in areas where there are few avian predators during the day.<ref>{{cite journal |last1=Chua |first1=Marcus A. H. |last2=Aziz |first2=Sheema Abdul |title=Into the light: atypical diurnal foraging activity of Blyth's horseshoe bat, Rhinolophus lepidus (Chiroptera: Rhinolophidae) on Tioman Island, Malaysia |journal=Mammalia |date=19 December 2018 |volume=83 |issue=1 |pages=78–83 |doi=10.1515/mammalia-2017-0128 |s2cid=90531252 |doi-access=free }}</ref><ref>{{cite journal |last1=Moore |first1=N. W. |title=The diurnal flight of the Azorean bat (Nyctalus azoreum) and the avifauna of the Azores |journal=Journal of Zoology |date=1975 |volume=177 |issue=4 |pages=483–486 |doi=10.1111/j.1469-7998.1975.tb02248.x}}</ref>
In temperate areas, some microbats [[Animal migration|migrate]] hundreds of kilometres to winter hibernation dens;{{sfn|Fenton|2001|pages=60–62}} others pass into torpor in cold weather, rousing and feeding when warm weather allows insects to be active.{{sfn|Fenton|2001|pages=93–94}} Others retreat to caves for winter and hibernate for as much as six months.{{sfn|Fenton|2001|pages=93–94}} Microbats rarely fly in rain; it interferes with their echolocation, and they are unable to hunt.<ref>{{cite web |author=Wolchover, N. |date=5 May 2011 |title=Why Bats Hate Rain |publisher=LiveScience |url=https://www.livescience.com/33258-bats-hate-rain.html |access-date= 19 December 2017}}</ref>
===Food and feeding===
[[File:Microbats' hunting.ogv|thumb|Bats feeding on insects over a lake]]
Different bat species have different diets, including insects, nectar, pollen, fruit and even vertebrates.{{sfn|Fenton|Simmons|2015|pages=104–107}} Megabats are mostly fruit, nectar and pollen eaters.<ref name="Schwab">{{cite journal |author1=Schwab, I. R. |author2=Pettigrew, J. |year=2005 |title=A choroidal sleight of hand |journal=British Journal of Ophthalmology |volume=89 |issue=11 |page=1398 |doi=10.1136/bjo.2005.077966|pmid=16267906 |pmc=1772916 }}</ref> Due to their small size, high-metabolism and rapid burning of energy through flight, bats must consume large amounts of food for their size. Insectivorous bats may eat over 120 percent of their body weight per day, while frugivorous bats may eat over twice their weight.{{sfn|Fenton|Simmons|2015|page=116}} They can travel significant distances each night, exceptionally as much as {{convert|38.5|km|mi|frac=2|abbr=on}} in the spotted bat (''[[Euderma maculatum]]''), in search of food.<ref>{{cite journal |last1=Rabe |first1=M. J.|display-authors=et al |title=Long Foraging Distance for a Spotted Bat (Euderma Maculatum) in Northern Arizona |journal=The Southwestern Naturalist |date=June 1998 |volume=43 |issue=2 |pages=266–269 |jstor=30055364 }}</ref> Bats use a variety of hunting strategies.<ref name=gonsalves/> Bats get most of their water from the food they eat; many species also drink from water sources like lakes and streams, flying over the surface and dipping their tongues into the water.{{sfn|Fenton|Simmons|2015|pages=76}}
The Chiroptera as a whole are in the process of losing the ability to synthesise [[vitamin C]].<ref name="pmid22069493">{{cite journal |year=2011 |title=Recent loss of vitamin C biosynthesis ability in bats |journal=PLOS ONE|volume=6 |issue=11 |pages=e27114 |bibcode=2011PLoSO...627114C |doi=10.1371/journal.pone.0027114 |pmc=3206078 |pmid=22069493 |last1=Cui |first1=J. |last2=Yuan |first2= X. |last3=Wang |first3=L. |last4=Jones |first4= G. |last5= Zhang |first5=S.|doi-access=free }}</ref> In a test of 34 bat species from six major families, including major insect- and fruit-eating bat families, all were found to have lost the ability to synthesise it, and this loss may derive from a common bat ancestor, as a single mutation.<ref>{{cite journal |author1=Jenness, R. |author2=Birney, E. |author3=Ayaz, K. |year=1980 |title=Variation of L-gulonolactone oxidase activity in placental mammals |journal=Comparative Biochemistry and Physiology B |volume=67 |issue=2 |pages=195–204 |doi=10.1016/0305-0491(80)90131-5}}</ref>{{efn|Earlier reports that only fruit bats were deficient were based on smaller samples.<ref name="pmid21037206"/>}} At least two species of bat, the frugivorous bat (''Rousettus leschenaultii'') and the insectivorous bat (''Hipposideros armiger''), have retained their ability to produce vitamin C.<ref name="pmid21037206">{{cite journal |author1=Cui, J. |author2=Pan, Y. H. |author3=Zhang, Y. |author4=Jones, G. |author5=Zhang, S. |title=Progressive pseudogenization: vitamin C synthesis and its loss in bats |journal=Mol. Biol. Evol. |volume=28 |issue=2 |pages=1025–31 |year=2011 |pmid=21037206 |doi=10.1093/molbev/msq286|doi-access=free }}</ref>
====Insects====
Most microbats, especially in temperate areas, prey on insects.{{sfn|Fenton|Simmons|2015|pages=104–107}} The diet of an insectivorous bat may span many species,{{sfn|Fenton|Simmons|2015|pages=108–110}} including [[flies]], [[mosquito]]s, [[beetle]]s, moths, [[grasshopper]]s, [[Cricket (insect)|cricket]]s, [[termite]]s, [[bee]]s, [[wasp]]s, [[mayflies]] and [[caddisflies]].<ref name="MacDonald">{{Cite book |author=Jones, G. |contribution=Bats |year=2001 |title=The Encyclopedia of Mammals |edition=2nd |editor=MacDonald, D. |publisher=Oxford University Press |pages=754–775 |isbn=978-0-7607-1969-5}}</ref><ref name="Wray Jusino Banik Palmer 2018">{{cite journal | last1=Wray | first1=Amy K. | last2=Jusino | first2=Michelle A. | last3=Banik | first3=Mark T. | last4=Palmer | first4=Jonathan M. | last5=Kaarakka | first5=Heather | last6=White | first6=J. Paul | last7=Lindner | first7=Daniel L. | last8=Gratton | first8=Claudio | last9=Peery | first9=M Zachariah | title=Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats | journal=Journal of Mammalogy | volume=99 | issue=3 | pages=668–674 | year=2018 | doi=10.1093/jmammal/gyy044 | doi-access=free }}</ref><ref>{{cite journal |last1=Patriquin |first1=Krista J |last2=Guy |first2=Cylita |last3=Hinds |first3=Joshua |last4=Ratcliffe |first4=John M |title=Male and female bats differ in their use of a large urban park |journal=Journal of Urban Ecology |date=1 January 2019 |volume=5 |issue=1 |pages=juz015 |doi=10.1093/jue/juz015 |url=https://academic.oup.com/jue/article/5/1/juz015/5572591 |access-date=13 December 2020|doi-access=free }}</ref> Large numbers of Mexican free-tailed bats (''Tadarida brasiliensis'') fly hundreds of metres above the ground in central Texas to feed on migrating moths.<ref>{{cite journal |pmid=21669777 |year=2008 |last1=McCracken |first1=G. F. |title=Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: Links to migratory insect populations |journal=Integrative and Comparative Biology |volume=48 |issue=1 |pages=107–118 |last2=Gillam |first2=E. H. |last3=Westbrook |first3=J. K. |last4=Lee |first4=Y. F. |last5=Jensen |first5=M. L. |last6=Balsley |first6=B. B. |doi=10.1093/icb/icn033|doi-access=free }}</ref> Species that hunt insects in flight, like the [[little brown bat]] (''Myotis lucifugus''), may catch an insect in mid-air with the mouth, and eat it in the air or use their tail membranes or wings to scoop up the insect and carry it to the mouth.<ref>{{cite web |title=Little Brown Bat |publisher=Penn State University |url=http://www.psu.edu/dept/nkbiology/naturetrail/speciespages/little_brown_bat.html|access-date=13 September 2017}}</ref>{{sfn|Fenton|Simmons|2015|page=120}} The bat may also take the insect back to its roost and eat it there.<ref>{{cite journal |last1=Fitt |first1=G. P. |year=1989 |title=The ecology of Heliothis species in relation to agro-ecosystems |journal=Annual Review of Entomology |volume=34 |pages=17–52 |doi=10.1146/annurev.ento.34.1.17}}</ref> Slower moving bat species, such as the [[brown long-eared bat]] (''Plecotus auritus'') and many horseshoe bat species, may take or [[Bat flight#Gleaning|glean]] insects from vegetation or hunt them from perches.<ref name="MacDonald"/> Insectivorous bats living at high latitudes have to consume prey with higher energetic value than tropical bats.<ref>{{cite journal|last1=Boyles |first1=J. G. |last2=McGuire |first2=L. P. |last3=Boyles |first3=E. |last4=Reimer |first4=J. P. |last5=Brooks |first5=C. A. |last6=Rutherford |first6=R. W. |last7=Rutherford |first7=T. A. |last8=Whitaker |first8=J. O. Jr.|last9=McCracken |first9=G. F. |year=2016 |title=Physiological and behavioral adaptations in bats living at high latitudes |journal=Physiology and Behavior |volume=165 |pages=322–327 |doi=10.1016/j.physbeh.2016.08.016|pmid=27542518 |s2cid=25361258 }}</ref>
====Fruit and nectar====
[[File:Rousettus aegyptiacus.jpg|thumb|left|An [[Egyptian fruit bat]] (''Rousettus aegyptiacus'') carrying a [[Ficus|fig]]]]
Fruit eating, or frugivory, is found in both major suborders. Bats prefer ripe fruit, pulling it off the trees with their teeth. They fly back to their roosts to eat the fruit, sucking out the juice and spitting the seeds and pulp out onto the ground. This helps disperse the seeds of these fruit trees, which may take root and grow where the bats have left them, and many species of plants depend on bats for [[seed dispersal]].<ref>{{cite web |author1=Simmons, N. B. |author2=Voss, R. S. |author3=Mori, S. A. |title=Bats as Dispersers of Plants in the Lowland Forests of Central French Guiana |publisher=New York Botanical Garden |access-date=14 September 2017 |url=https://www.nybg.org/botany/tlobova/mori/batsplants/batdispersal/batdispersal_frameset.htm}}</ref>{{sfn|Fenton|Simmons|2015|page=115}} The [[Jamaican fruit bat]] (''Artibeus jamaicensis'') has been recorded carrying fruits weighing {{convert|3|-|14|g|oz|frac=16|abbr=on}} or even as much as {{convert|50|g|oz|frac=4|abbr=on}}.<ref name=Ortega2001>{{cite journal |last1=Ortega |first1=J. |last2=Castro-Arellano |first2=I. |year=2001 |title=''Artibeus jamaicensis'' |journal=Mammalian Species|pages=1–9 |issue=662 |doi=10.1644/1545-1410(2001)662<0001:aj>2.0.co;2|s2cid=198969258 }}</ref>
Nectar-eating bats have acquired specialised adaptations. These bats possess long muzzles and long, extensible [[tongue]]s covered in fine bristles that aid them in feeding on particular flowers and plants.{{sfn|Fenton|Simmons|2015|page=115}}<ref name="NGtongue"/> The [[tube-lipped nectar bat]] (''Anoura fistulata'') has the longest tongue of any mammal relative to its body size. This is beneficial to them in terms of pollination and feeding. Their long, narrow tongues can reach deep into the long cup shape of some flowers. When the tongue retracts, it coils up inside the rib cage.<ref name="NGtongue">{{cite web |url=http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html|title=Photo in the News: Bat Has Longest Tongue of Any Mammal |access-date=18 June 2007 |last=Chamberlain |first=T. |date=6 December 2006 |work=National Geographic News |publisher=National Geographic Society |quote=''A. fistulata'' (shown lapping sugar water from a tube) has the longest tongue, relative to body length, of any mammal{{snd}}and now scientists think they know why. |archive-url=https://web.archive.org/web/20070606114143/http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html |archive-date=6 June 2007 |url-status=dead}}</ref> Because of these features, nectar-feeding bats cannot easily turn to other food sources in times of scarcity, making them more prone to extinction than other types of bat.<ref>{{cite journal |last2=Santos-Del-Prado |first2=K. |last3=Arita |first3=H.T. |year=1999 |title=Conservation Biology of Nectar-Feeding Bats in Mexico |journal=Journal of Mammalogy |volume=80 |issue=1 |pages=31–41 |doi=10.2307/1383205|last1=Arita|first1=H. T.|jstor=1383205 |doi-access= }}</ref><ref>{{cite journal |last2=Hobson |first2=K. A. |last3=Adriana |first3=M. A. |last4=Daniel |first4=E. B. |last5=Sanchez-Corero |first5=V. |last6=German |first6=M. C. |year=2001|title=The Role of Fruits and Insects in the Nutrition of Frugivorous Bats: Evaluating the Use of Stable Isotope Models |journal=Biotropica |volume=33 |issue=3 |pages=520–528 |doi=10.1111/j.1744-7429.2001.tb00206.x |last1=Gerardo |first1=H.|bibcode=2001Biotr..33..520H |s2cid=247675112 }}</ref> Nectar feeding also aids a variety of plants, since these bats serve as [[pollinator]]s, as pollen gets attached to their fur while they are feeding. Around 500 species of flowering plant rely on bat pollination and thus tend to open their flowers at night.{{sfn|Fenton|Simmons|2015|page=115}} Many rainforest plants depend on bat pollination.<ref>{{cite journal |last1=Hodgkison |first1=R. |last2=Balding |first2=S. T. |last3=Zuibad |first3=A. |last4=Kunz |first4=T. H. |year=2003 |title=Fruit Bats (Chiroptera: Pteropodidae) as Seed Dispersers and Pollinators in a Lowland Malaysian Rain Forest |journal=Biotropica |volume=35 |issue=4 |pages=491–502 |doi=10.1111/j.1744-7429.2003.tb00606.x|bibcode=2003Biotr..35..491H |s2cid=86327074 }}</ref>
====Vertebrates====
[[File:GreaterNoctule.JPG|thumb|upright|The [[greater noctule bat]] (''Nyctalus lasiopterus'') uses its large teeth to catch birds.<ref name=popa/>]]
Some bats prey on other vertebrates, such as fish, frogs, lizards, birds and mammals.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|page=107}} The [[fringe-lipped bat]] (''Trachops cirrhosus,'') for example, is skilled at catching frogs. These bats locate large groups of frogs by tracking their mating calls, then plucking them from the surface of the water with their sharp canine teeth.<ref>{{cite journal |author1=Cramer, M. J. |author2=Wilig, M. R. |author3=Jones, C. |year=2001 |title=Trachops cirrhosus|journal=Mammalian Species |issue=656 |pages=1–6|doi=10.1644/1545-1410(2001)656<0001:TC>2.0.CO;2 |s2cid=198968973 }}</ref> The [[greater noctule bat]] can catch birds in flight.<ref name=popa>{{cite journal |first1=A. G. |last1=Popa-Lisseanu |first2=A. |last2=Delgado-Huertas |first3=M. G. |last3=Forero |first4=A. |last4=Rodríguez |first5=R. |last5=Arlettaz |first6=C. |last6=Ibáñez |year=2007 |title=Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds |journal=PLOS ONE|volume=2 |issue=2 |pages=e205 |doi=10.1371/journal.pone.0000205 |pmid=17299585 |pmc=1784064 |bibcode=2007PLoSO...2..205P |doi-access=free }}</ref> Some species, like the greater bulldog bat (''[[Noctilio leporinus]]'') hunt fish. They use echolocation to detect small ripples on the water's surface, swoop down and use specially enlarged claws on their hind feet to grab the fish, then take their prey to a feeding roost and consume it.<ref name="Schnitzler 1994">{{cite journal|author1=Schnitzler, H.-U. |author2=Kalko, E. K. V. |author3=Kaipf, I. |author4=Grinnell, A. D. |year=1994 |title=Fishing and Echolocation Behavior of the Greater Bulldog Bat, ''Noctilio leporinus'', in the Field |journal=Behavioral Ecology and Sociobiology |volume=35 |issue=5 |pages=327–345 |doi=10.1007/BF00184422|s2cid=23782948 }}</ref> At least two species of bat are known to feed on other bats: the [[spectral bat]] (''Vampyrum spectrum''), and the [[ghost bat]] (''Macroderma gigas'').{{sfn|Fenton|2001|pages=4–5}}
====Blood====
[[File:Desmo-boden (cropped).jpg|thumb|The [[common vampire bat]] (''Desmodus rotundus'') feeds on blood ([[hematophagy]]).]]
A few species, specifically the common, [[white-winged vampire bat|white-winged]], and [[Hairy-legged vampire bat|hairy-legged]] vampire bats, feed only on animal blood ([[hematophagy]]). The common vampire bat typically feeds on large mammals such as [[cattle]]; the hairy-legged and white-winged vampires feed on birds.<ref>{{cite book |author=Greenhall, A. M. |year=1961 |title=Bats in Agriculture |page=8 |publisher=A Ministry of Agriculture Publication}}</ref> Vampire bats target sleeping prey and can detect deep breathing.{{sfn|Fenton|Simmons|2015|page=119}} Heat sensors in the nose help them to detect blood vessels near the surface of the skin.<ref name="Wilkinson 1990">{{cite journal |author=Wilkinson, G. |year=1990 |title=Food Sharing in Vampire Bats |url=http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf |journal=Scientific American |volume=262 |issue=21 |pages=76–82 |doi=10.1038/scientificamerican0290-76 |bibcode=1990SciAm.262b..76W |access-date=19 December 2017 |archive-date=21 September 2020 |archive-url=https://web.archive.org/web/20200921025300/http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf |url-status=dead }}</ref> They pierce the animal's skin with their teeth, biting away a small flap,<ref name="Nowak 1991">{{cite book |author=Nowak, R. M. |year=1991 |title=Walker's Mammals of the World |page=[https://archive.org/details/walkersmammalsof01nowa/page/1629 1629] |publisher=Johns Hopkins Press |isbn=978-0-8018-3970-2 |url-access=registration |url=https://archive.org/details/walkersmammalsof01nowa/page/1629 }}</ref> and lap up the blood with their tongues, which have lateral grooves adapted to this purpose.<ref>{{cite web|title=Vampire Bats – The Good, the Bad, and the Amazing|publisher=Natural Science Research Laboratory – Texas Tech|url=http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf|access-date=14 December 2017|archive-url=https://web.archive.org/web/20171215000829/http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf|archive-date=15 December 2017|url-status=dead}}</ref> The blood is kept from clotting by an [[anticoagulant]] in the saliva.<ref name="Nowak 1991"/>
===Predators, parasites, and diseases===
{{Further|Bat virome}}
Bats are subject to predation from [[birds of prey]], such as [[owls]], [[hawks]], and [[falcons]], and at roosts from terrestrial predators able to climb, such as cats.<ref name="RydellSpeakman1995"/> Low-flying bats are vulnerable to [[crocodile]]s.<ref>{{cite web |url=https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo |title=Flying Foxes Vs Freshwater Crocodile |author=BBC Earth |website=Youtube.com |date=10 April 2015 |access-date=19 August 2021 |url-status=live|archive-url=https://web.archive.org/web/20201001170139/https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo |archive-date=1 October 2020 }}</ref> Twenty species of tropical New World [[snake]]s are known to capture bats, often waiting at the entrances of refuges, such as caves, for bats to fly past.<ref name="EsbérardVrcibradic2007">{{cite journal |last1=Esbérard |first1=C. E. L. |last2=Vrcibradic |first2=D. |title=Snakes preying on bats: new records from Brazil and a review of recorded cases in the Neotropical Region |journal=Revista Brasileira de Zoologia |volume=24 |issue=3 |year=2007 |pages=848–853 |doi=10.1590/S0101-81752007000300036|doi-access=free }}</ref> J. Rydell and J. R. Speakman argue that bats evolved nocturnality during the early and middle [[Eocene]] period to avoid predators.<ref name="RydellSpeakman1995">{{cite journal |last1=Rydell |first1=J. |last2=Speakman |first2=J. R. |title=Evolution of nocturnality in bats: Potential competitors and predators during their early history |journal=Biological Journal of the Linnean Society |volume=54 |issue=2 |year=1995 |pages=183–191 |doi=10.1111/j.1095-8312.1995.tb01031.x}}</ref> The evidence is thought by some zoologists to be equivocal so far.<ref name="LimaO'Keefe2013">{{cite journal |last1=Lima |first1=S. L. |last2=O'Keefe |first2=J. M. |title=Do predators influence the behaviour of bats? |journal=Biological Reviews |volume=88 |issue=3 |year=2013 |pages=626–644 |doi=10.1111/brv.12021|pmid=23347323 |s2cid=32118961 |doi-access=free }}</ref>
[[File:Little Brown Bat with White Nose Syndrome (Greeley Mine, cropped).jpg|thumb|upright|A [[little brown bat]] with [[white nose syndrome]]]]
As are most mammals, bats are hosts to a number of internal and external parasites.<ref name="Léger2020">{{cite journal|last1=Léger|first1=Clément|title=Bat parasites (Acari, Anoplura, Cestoda, Diptera, Hemiptera, Nematoda, Siphonaptera, Trematoda) in France (1762–2018): a literature review and contribution to a checklist|journal=Parasite|volume=27|year=2020|pages=61|issn=1776-1042|doi=10.1051/parasite/2020051|pmid=33206593|pmc=7673352|doi-access=free}} {{open access}}</ref> Among [[ectoparasite]]s, bats carry [[flea]]s and [[mite]]s, as well as specific parasites such as [[bat bug]]s and bat flies ([[Nycteribiidae]] and [[Streblidae]]).<ref>{{cite book |url=https://books.google.com/books?id=Li6_BAAAQBAJ |title=Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths |last1=Klimpel |first1=S. |last2=Mehlhorn |first2=H. |year=2013 |publisher=Springer |isbn=978-3-642-39333-4 |page=87 }}</ref><ref name="Clayton2015"/> Bats are among the few non-aquatic mammalian orders that do not host [[lice]], possibly due to competition from more specialised parasites that occupy the same niche.<ref name="Clayton2015">{{cite book |url=https://books.google.com/books?id=lN0pCwAAQBAJ |title=Coevolution of Life on Hosts: Integrating Ecology and History |last1=Clayton |first1=D. H. |last2=Bush |first2=S. E. |last3=Johnson |first3=K. P. |year=2015 |publisher=University of Chicago Press |isbn=978-0-226-30227-0 |page=28}}</ref>
[[White nose syndrome]] is a condition associated with the deaths of millions of bats in the [[Eastern United States]] and Canada.<ref>{{cite web |url=http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ |title=White-Nose Syndrome (WNS) |publisher=National Wildlife Health Center, U.S. Geological Survey |access-date=3 June 2014 |archive-url=https://web.archive.org/web/20190930212052/https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ |archive-date=30 September 2019 |url-status=dead }}</ref> The disease is named after a white [[fungus]], ''[[Pseudogymnoascus destructans]]'', found growing on the muzzles, ears, and wings of affected bats. The fungus is mostly spread from bat to bat, and causes the disease.<ref>{{cite journal |author1=Lorch, J. M. |author2=Meteyer, C. U. |author3=Behr, M. J. |author4=Boyles, J. G. |author5=Cryan, P. M. |author6=Hicks, A. C. |author7=Ballmann, A. E. |author8=Coleman, J. T. H. |author9=Redell, D. N. |author10=Reeder, D. M. |author11=.Blehert, D. S. |year=2011 |title=Experimental infection of bats with Geomyces destructans causes white-nose syndrome |journal=Nature |volume=480 |issue=7377 |pages=376–378 |doi=10.1038/nature10590|pmid=22031324 |bibcode=2011Natur.480..376L |s2cid=4381156 }}</ref> The fungus was first discovered in central New York State in 2006 and spread quickly to the entire Eastern US north of Florida; mortality rates of 90–100% have been observed in most affected caves.<ref>{{cite web |url=http://www.cwhc-rcsf.ca/wns.php |title=White-Nose Syndrome – Background |publisher=Canadian Cooperative Wildlife Health Centre |access-date=3 June 2014 |archive-date=16 February 2020 |archive-url=https://web.archive.org/web/20200216145004/http://www.cwhc-rcsf.ca/wns.php |url-status=dead }}</ref> [[New England]] and the [[mid-Atlantic states]] have, since 2006, witnessed entire species completely extirpated and others with numbers that have gone from the hundreds of thousands, even millions, to a few hundred or less.<ref>{{cite web |url=http://philadelphia.cbslocal.com/2013/11/14/pennsylvanias-bats-nearly-wiped-out/ |title=Pennsylvania's Bats Nearly Wiped Out |author=Daly, M. |publisher=CBS Philadelphia |date=14 November 2013 |access-date=18 December 2017}}</ref> Nova Scotia, Quebec, Ontario, and New Brunswick have witnessed identical die offs, with the Canadian government making preparations to protect all remaining bat populations in its territory.<ref>{{cite web |url=http://o.canada.com/technology/white-nose-syndrome-killing-canadas-bats |title=White-nose syndrome killing Canada's bats |date=7 June 2012 |publisher=Postmedia Network |author=Gutenberg, G. |access-date=21 April 2016}}</ref> Scientific evidence suggests that longer winters where the fungus has a longer period to infect bats result in greater mortality.<ref>{{cite web |url=http://www.thefreelibrary.com/Canada+%3A+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192 |title=Canada : Environment Canada Announces Funding to Fight Threat of White-nose Syndrome to Bats |publisher=Mena Report |date=6 April 2013 |access-date=3 June 2014 |archive-date=28 March 2019 |archive-url=https://web.archive.org/web/20190328065456/https://www.thefreelibrary.com/Canada+%3a+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192 |url-status=dead }}</ref><ref>{{cite web |url=https://www.nsf.gov/news/news_summ.jsp?cntn_id=124679 |title=Social Bats Pay a Price: Fungal Disease, White-Nose Syndrome ... Extinction? |publisher=The National Science Foundation |date=3 July 2012 |access-date=3 June 2014}}</ref><ref name="FrickPollock2010">{{cite journal |last1=Frick |first1=W. F. |last2=Pollock |first2=J. F. |last3=Hicks |first3=A. C. |last4=Langwig |first4=K. E. |last5=Reynolds |first5=D. S. |last6=Turner |first6=G. G. |last7=Butchkoski |first7=C. M. |last8=Kunz |first8=T. H. |s2cid=43601856 |title=An Emerging Disease Causes Regional Population Collapse of a Common North American Bat Species |journal=Science |volume=329 |issue=5992 |year=2010 |pages=679–682 |doi=10.1126/science.1188594 |pmid=20689016 |bibcode=2010Sci...329..679F |url=https://digitalcommons.usf.edu/kip_articles/143 }}</ref> In 2014, the infection crossed the Mississippi River,<ref>{{cite web |url=https://www.whitenosesyndrome.org/sites/default/files/files/wns_illinois_detection_final_upload.pdf |publisher=Illinois Department of Natural Resources |date=28 February 2013 |title=White-Nose Syndrome Confirmed in Illinois Bats: Illinois becomes 20th state in U.S. to confirm deadly disease in bats}}</ref> and in 2017, it was found on bats in Texas.<ref>{{cite web |url=https://tpwd.texas.gov/newsmedia/releases/?req=20170323c |title=Fungus that Causes White-nose Syndrome in Bats Detected in Texas |publisher=Texas Parks and Wildlife |date=23 March 2017 |access-date=15 December 2017}}</ref>
Bats are [[natural reservoir]]s for a large number of [[zoonosis|zoonotic]] [[pathogen]]s,<ref name="Wong2007">{{cite journal |last=Wong |first=S. |date=October 2006 |title=Bats as a continuing source of emerging infections in humans |journal=Reviews in Medical Virology |publisher=[[John Wiley & Sons]] |volume=17 |issue=2 |pages=67–91 |doi=10.1002/rmv.520 |pmid=17042030 |quote=The currently known viruses that have been found in bats are reviewed and the risks of transmission to humans are highlighted. |author2=Lau, S. |author3=Woo, P. |author4=Yuen, K.-Y.|pmc=7169091 }}</ref> including [[Rabies in animals#Bats|rabies]], endemic in many bat populations,<ref name="McColl2000">{{cite journal |last=McColl |first=K. A. |year= 2000 |title=Bat lyssavirus infections |journal=Revue Scientifique et Technique |volume=19 |issue=1 |pages=177–196 |pmid=11189715 |quote=Bats, which represent approximately 24% of all known mammalian species, frequently act as vectors of lyssaviruses. |author2=Tordo, N. |author3=Setien Aquilar, A. A.|doi=10.20506/rst.19.1.1221 |doi-access= }}</ref><ref name=Calisher2006>{{Cite journal|author1-link=Charles Calisher |last1=Calisher |first1=C. H. |last2=Childs |first2=J. E. |last3=Field |first3=H. E. |last4=Holmes |first4=K. V. |last5=Schountz |first5=T. |year= 2006 |title=Bats: Important Reservoir Hosts of Emerging Viruses |journal=Clinical Microbiology Reviews |volume=19 |issue=3 |pages=531–545 |doi=10.1128/CMR.00017-06 |pmc=1539106 |pmid=16847084}}</ref><ref name="Brüssow2012">{{cite book |last1=Brüssow |first1=H. |title=Viruses: Essential Agents of Life |year=2012 |pages=245–267 |doi=10.1007/978-94-007-4899-6_12|chapter=On Viruses, Bats and Men: A Natural History of Food-Borne Viral Infections |isbn=978-94-007-4898-9 |s2cid=82956979 }}</ref> [[histoplasmosis]] both directly and in guano,<ref name=CDC2014/> [[Henipavirus|Nipah and Hendra viruses]],<ref name="EatonBroder2006">{{cite journal |last1=Eaton |first1=Bryan T. |last2=Broder |first2=Christopher C. |last3=Middleton |first3=Deborah |last4=Wang |first4=Lin-Fa |title=Hendra and Nipah viruses: different and dangerous |journal=Nature Reviews Microbiology |volume=4 |issue=1 |year=2006 |pages=23–35 |doi=10.1038/nrmicro1323|pmid=16357858 |pmc=7097447 }}</ref><ref name="Halpin2000">{{cite journal |last1=Halpin |first1=K. |year=2000 |title=Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus |journal=[[Journal of General Virology]] |volume=81 |issue=8 |pages=1927–1932 |pmid=10900029 |quote=In this paper we describe the isolation of HeV from pteropid bats, corroborating our serological and epidemiological evidence that these animals are a natural reservoir host of this virus. |author2=Young, P. L. |author3=Field, H. E. |author4=Mackenzie, J. S.|doi=10.1099/0022-1317-81-8-1927 |doi-access=free }}</ref> and possibly the [[ebola virus]],<ref name="Leroy2005">{{cite journal |last=Leroy |first=E. M. |year= 2005 |title=Fruit bats as reservoirs of Ebola virus |journal=[[Nature (journal)|Nature]] |volume=438 |issue=7068 |pages=575–576 |bibcode=2005Natur.438..575L |doi=10.1038/438575a |pmid=16319873 |quote=We find evidence of asymptomatic infection by Ebola virus in three species of megabats, indicating that these animals may be acting as a reservoir for this deadly virus. |author2=Kumulungui, B. |author3=Pourrut, X. |author4=Rouque, P.|s2cid=4403209 }}</ref><ref name="SciAm2006">{{cite news |url=http://www.sciam.com/article.cfm?id=going-to-bat |title=Going to Bat |year= 2006 |work=[[Scientific American]] |pages=24, 26 |quote=Long known as vectors for rabies, bats may be the origin of some of the most deadly emerging viruses, including SARS, Ebola, Nipah, Hendra and Marburg. |author=Choi, C. Q.}} Note: This is a lay summary of the various scientific publications cited in the preceding sentence.</ref> whose natural reservoir is yet unknown.<ref name="CDC EVD">{{cite web|url=https://www.cdc.gov/vhf/ebola/about.html| title=What is Ebola Virus Disease?| website=Centers for Disease Control and Prevention| date=5 November 2019| access-date=13 April 2020|quote=Scientists do not know where Ebola virus comes from.}}</ref><ref>{{cite journal|doi=10.1016/j.aogh.2015.02.005|quote=Despite concerted investigative efforts, the natural reservoir of the virus is unknown.|title=Transmission of Ebola Virus Disease: An Overview|year=2015|last1=Rewar|first1=Suresh|last2=Mirdha|first2=Dashrath|journal=Annals of Global Health|volume=80|issue=6|pages=444–51|pmid=25960093|doi-access=free}}</ref> Their high mobility, broad distribution, long life spans, substantial [[sympatry]] (range overlap) of species, and social behaviour make bats favourable hosts and vectors of disease.<ref name=Castro2013/> Reviews have found different answers as to whether bats have more zoonotic viruses than other mammal groups. One 2015 review found that bats, rodents, and primates all harbored significantly more [[zoonotic]] viruses (which can be transmitted to humans) than other mammal groups, though the differences among the aforementioned three groups were not significant (bats have no more zoonotic viruses than rodents and primates).<ref name="Olival">{{cite book|doi=10.1002/9781118818824.ch11|chapter=Are Bats Really 'Special' as Viral Reservoirs? What We Know and Need to Know|title=Bats and Viruses|year=2015|last1=Olival|first1=Kevin J.|last2=Weekley|first2=Cristin C.|last3=Daszak|first3=Peter|pages=281–294|isbn=978-1118818824}}</ref> Another 2020 review of mammals and birds found that the identity of the taxonomic groups did not have any impact on the probability of harboring zoonotic viruses. Instead, more diverse groups had greater viral diversity.<ref name="Mollentze">{{cite journal|doi=10.1073/pnas.1919176117|title=Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts|year=2020|last1=Mollentze|first1=Nardus|last2=Streicker|first2=Daniel G.|journal=Proceedings of the National Academy of Sciences|volume=117|issue=17|pages=9423–9430|pmid=32284401|pmc=7196766|bibcode=2020PNAS..117.9423M |doi-access=free}}</ref>
They seem to be highly resistant to many of the pathogens they carry, suggesting a degree of adaptation to their immune systems.<ref name=Castro2013>{{Cite web |author=Castro, J. |url=http://www.livescience.com/26898-bats-host-human-infecting-viruses.html |title=Bats Host More Than 60 Human-Infecting Viruses |date=6 February 2013 |access-date=19 December 2017 |publisher=Live Science}}</ref><ref>{{Cite journal |last=Dobson |first=A. P. |year= 2005 |title=What Links Bats to Emerging Infectious Diseases? |journal=Science |volume=310 |issue=5748 |pages=628–629 |doi=10.1126/science.1120872 |pmid=16254175|s2cid=84007133 }}</ref><ref>{{Cite web |url=http://www.iflscience.com/plants-and-animals/why-do-bats-transmit-so-many-diseases/ |title=Why Do Bats Transmit So Many Diseases? |date=6 August 2014 |publisher=IFL Science |access-date=19 December 2017}}</ref> Their interactions with livestock and pets, including predation by vampire bats, accidental encounters, and the scavenging of bat carcasses, compound the risk of zoonotic transmission.<ref name=Calisher2006/> Bats are implicated in the emergence of [[severe acute respiratory syndrome]] (SARS) in China, since they serve as natural hosts for [[coronavirus]]es, several from a single cave in [[Yunnan]], one of which developed into the SARS virus.<ref name=CDC2014>{{Cite web |url=https://www.cdc.gov/features/bats/ |title=CDC Features – Take Caution When Bats Are Near |publisher=Centers for Disease Control and Prevention |date=14 April 2014}}</ref><ref name="Li2005">{{cite journal |last=Li |first=W. |date=28 October 2005 |title=Bats are natural reservoirs of SARS-like coronaviruses |journal=[[Science (journal)|Science]] |volume=310 |issue=5748 |pages=676–679 |bibcode=2005Sci...310..676L |doi=10.1126/science.1118391 |pmid=16195424 |quote=The genetic diversity of bat-derived sequences supports the notion that bats are a natural reservoir host of the SARS cluster of coronaviruses.|author2=Shi, Z. |author3=Yu, M. |author4=Ren, W. |s2cid=2971923 |url=https://zenodo.org/record/3949088|doi-access=free }}</ref><ref name="DrostenHu2017">{{cite journal |last1=Drosten |first1=C. |last2=Hu |first2=B. |last3=Zeng |first3=L.-P. |last4=Yang |first4=X.-L. |last5=Ge |first5=Xing-Yi |last6=Zhang |first6=Wei |last7=Li |first7=Bei |last8=Xie |first8=J.-Z. |last9=Shen |first9=X.-R. |last10=Zhang |first10=Yun-Zhi |last11=Wang |first11=N. |last12=Luo |first12=D.-S. |last13=Zheng |first13=X.-S. |last14=Wang |first14=M.-N. |last15=Daszak |first15=P. |last16=Wang |first16=L.-F. |last17=Cui |first17=J. |last18=Shi |first18=Z.-L. |title=Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus |journal=PLOS Pathogens |volume=13 |issue=11 |year=2017 |pages=e1006698 |doi=10.1371/journal.ppat.1006698|pmid=29190287 |pmc=5708621 |doi-access=free }}</ref> However, they neither cause nor spread [[COVID-19]].<ref>{{cite journal |author1=Srinivasulu, C. |name-list-style=amp |author2=Molur, S. |year=2020 |title=Bats don't cause or spread Covid-19 |journal=Zoo's Print |volume=35 |issue=4 |pages=1–3 |url=https://www.zoosprint.zooreach.org/index.php/zp/article/view/5669/5086}}</ref>
==Behaviour and life history==
===Social structure===
[[File:Bracken Bat Cave evening of 17 June 2017.ogv|thumb|right|[[Bracken Bat Cave]], home to twenty million Mexican free-tailed bats]]
Some bats lead solitary lives, while others live in colonies of more than a million.{{sfn|Fenton|2001|pages=95–107}} For instance, the [[Mexican free-tailed bat]] fly for more than one thousand miles to the {{Convert|100|ft|m|adj=on}} wide cave known as [[Bracken Cave]] every March to October which plays home to an astonishing twenty million of the species,<ref>{{Cite web|title=How Many Species of Bats Are There? |url=https://www.worldatlas.com/articles/bat-species.html |access-date=21 September 2020 |website=WorldAtlas|date=14 March 2018 }}</ref> whereas a [[mouse-eared bat]] lives an almost completely solitary life.<ref>{{cite news |last=Barkham |first=Patrick |date=12 June 2018 |title=The last bat: the mystery of Britain's most solitary animal |work=[[The Guardian]] |url=https://www.theguardian.com/news/2018/jun/12/the-last-bat-the-mystery-of-britains-most-solitary-animal |access-date=21 September 2020 |issn=0261-3077}}</ref> Living in large colonies lessens the risk to an individual of predation.<ref name="MacDonald"/> Temperate bat species may [[Swarm behaviour|swarm]] at hibernation sites as autumn approaches. This may serve to introduce young to hibernation sites, signal reproduction in adults and allow adults to breed with those from other groups.{{sfn|Fenton|Simmons|2015|pages=188–189}}
Several species have a [[fission–fusion society|fission-fusion social structure]], where large numbers of bats congregate in one roosting area, along with breaking up and mixing of subgroups. Within these societies, bats are able to maintain long-term relationships.<ref>{{cite journal |author1=Kerth, G. |author2=Perony, N. |author3=Schweitzer, F. |year=2011 |title=Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups |journal=Proceedings of the Royal Society B: Biological Sciences |volume=278 |issue=1719 |pages=2761–2767 |doi=10.1098/rspb.2010.2718|pmid=21307051 |pmc=3145188 }}</ref> Some of these relationships consist of [[matrilineal]]ly related females and their dependent offspring.<ref>{{cite journal |author1=Fornůsková, A |author2=Petit, E. J. |author3=Bartonička, T. |author4=Kaňuch, P. |author5=Butet, A. |author6=Řehák, Z. |author7=Bryja, J. |year=2014 |title=Strong matrilineal structure in common pipistrelle bats (''Pipistrellus pipistrellus'') is associated with variability in echolocation calls |journal=Biological Journal of the Linnean Society |volume=113 |issue=4 |pages=1115–1125 |doi=10.1111/bij.12381|doi-access=free }}</ref> Food sharing and [[mutual grooming]] may occur in certain species, such as the common vampire bat (''Desmodus rotundus''), and these strengthen social bonds.<ref name="Carter & Wilkinson 2013">{{cite journal |author1=Carter, G. G. |author2=Wilkinson, G. S. D. |year=2013 |title=Does food sharing in vampire bats demonstrate reciprocity? |journal=Communicative & Integrative Biology |volume=6|issue=6 |pmc=3913674 |pmid=24505498 |doi=10.4161/cib.25783 |pages=e25783}}</ref><ref name="Wilkinson 1986">{{cite journal |author=Wilkinson, G. S. |year=1986 |title=Social Grooming in the Common Vampire Bat, ''Desmodus rotundus'' |url=http://www.life.umd.edu/faculty/wilkinson/Wilk_AB86.pdf |journal=Anim. Behav. |volume=34 |issue=6 |pages=1880–1889 |doi=10.1016/s0003-3472(86)80274-3|citeseerx=10.1.1.539.5104 |s2cid=11214563}}</ref> Homosexual fellatio has been observed in the Bonin Flying Fox ''Pteropus pselaphon''<ref>{{Cite journal |last=Sugita |first=Norimasa |date=2016 |title=Homosexual fellatio: erect penis licking between male Bonin Flying Foxes Pteropus pselaphon |journal=PLOS ONE |volume=11 |issue=11 |pages=e0166024|doi=10.1371/journal.pone.0166024 |doi-access=free |pmid=27824953 }}</ref> and the Indian Flying Fox ''Pteropus medius'',<ref>{{Cite journal |last1=Sundar |first1=K. S. Gopi |last2=Kittur |first2=Swati |date=2020 |title=An observation of homosexual fellatio in the Indian Flying Fox Pteropus medius (Temminck, 1825) (Mammalia: Chiroptera: Pteropodidae) |journal=Journal of Threatened Taxa |volume=12 |issue=8 |pages=15945–15946|doi=10.11609/jott.5893.12.8.15945-15946 |doi-access=free }}</ref> though the function and purpose of this behaviour is not clear.
===Communication===
[[File:Journal.pone.0006746.g001.png|thumb|left|Acoustics of the songs of [[Mexican free-tailed bat]]s<ref name="Bohn"/>]]
Bats are among the most vocal of mammals and produce calls to attract mates, find roost partners and defend resources. These calls are typically low-frequency and can travel long distances.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|pages=190–194}} Mexican free-tailed bats are one of the few species to "sing" like birds. Males sing to attract females. Songs have three phrases: chirps, trills and buzzes, the former having "A" and "B" syllables. Bat songs are highly stereotypical but with variation in syllable number, phrase order, and phrase repetitions between individuals.<ref name="Bohn">{{cite journal |last1=Bohn|first1=K. M.|first2=Barbara|last2=Schmidt-French|first3=Christine|last3=Schwartz|first4=Michael|last4=Smotherman|first5=George D.|last5=Pollak|year=2009|title=Versatility and Stereotypy of Free-Tailed Bat Songs |journal=PLOS ONE|volume=4 |issue=8 |page=e6746 |doi=10.1371/journal.pone.0006746 |bibcode=2009PLoSO...4.6746B|pmc=2727915 |pmid=19707550|doi-access=free}}</ref> Among [[greater spear-nosed bat]]s (''Phyllostomus hastatus''), females produce loud, broadband calls among their roost mates to form group cohesion. Calls differ between roosting groups and may arise from vocal learning.<ref>{{cite journal |author=Boughman, J. W. |year=1998 |title=Vocal learning by greater spear-nosed bats|journal=Proceedings of the Royal Society B: Biological Sciences |volume=265 |issue=1392 |pages=227–233 |doi=10.1098/rspb.1998.0286|pmid=9493408 |pmc=1688873 }}</ref>
In a study on captive Egyptian fruit bats, 70% of the directed calls could be identified by the researchers as to which individual bat made it, and 60% could be categorised into four contexts: squabbling over food, jostling over position in their sleeping cluster, protesting over mating attempts and arguing when perched in close proximity to each other. The animals made slightly different sounds when communicating with different individual bats, especially those of the opposite sex.<ref>{{cite journal |last1=Prat |first1=Y. |last2=Taub |first2=M. |last3=Yovel |first3=Y. |title=Everyday bat vocalizations contain information about emitter, addressee, context, and behavior |journal=Scientific Reports |date=22 December 2016 |volume=6 |pages=39419 |doi=10.1038/srep39419 |pmid=28005079 |pmc=5178335 |bibcode=2016NatSR...639419P }}</ref> In the highly [[sexual dimorphism|sexually dimorphic]] [[hammer-headed bat]] (''Hypsignathus monstrosus''), males produce deep, resonating, monotonous calls to attract females. Bats in flight make vocal signals for traffic control. Greater bulldog bats honk when on a collision course with each other.{{sfn|Fenton|Simmons|2015|pages=190–194}}
Bats also communicate by other means. Male [[little yellow-shouldered bat]]s (''Sturnira lilium'') have shoulder glands that produce a spicy odour during the breeding season. Like many other species, they have hair specialised for retaining and dispersing secretions. Such hair forms a conspicuous collar around the necks of the some Old World megabat males. Male [[greater sac-winged bat]]s (''Saccopteryx bilineata'') have sacs in their wings in which they mix body secretions like saliva and urine to create a perfume that they sprinkle on roost sites, a behaviour known as "salting". Salting may be accompanied by singing.{{sfn|Fenton|Simmons|2015|pages=190–194}}
===Reproduction and life cycle===
[[File:Desmo-kolonie-baum.tif|thumb|left|Group of polygynous vampire bats]]
Most bat species are [[Polygyny in animals|polygynous]], where males mate with multiple females. Male pipistrelle, noctule and vampire bats may claim and defend resources that attract females, such as roost sites, and mate with those females. Males unable to claim a site are forced to live on the periphery where they have less reproductive success.<ref name="mating">{{cite journal |author=Wilkinson, G. S. |year=1985 |title=The Social Organization of the Common Vampire Bat II: Mating system, genetic structure, and relatedness |journal=Behavioral Ecology and Sociobiology |volume=17 |issue=2 |pages=123–134 |url=http://www.life.umd.edu/faculty/wilkinson/Wilk_BES85b.pdf |doi=10.1007/BF00299244|s2cid=12460893 }}</ref><ref name="MacDonald"/> [[Promiscuity#Other animals|Promiscuity]], where both sexes mate with multiple partners, exists in species like the Mexican free-tailed bat and the little brown bat.<ref>{{cite journal |author1=Thomas, D. W. |author2=Fenton, M. R. |author3=Barclay, R. M. R. |year=1979 |title=Social Behavior of the Little Brown Bat, ''Myotis lucifugus'': I. Mating Behavior |journal=Behavioral Ecology and Sociobiology |volume=6 |issue=2 |pages=129–136 |jstor=4599268 |doi=10.1007/bf00292559|s2cid=27019675 }}</ref><ref>{{cite journal |doi=10.1644/BME-004 |title=The Mating System of ''Tadarida brasiliensis'' (Chiroptera: Molossidae) in a Large Highway Bridge Colony |journal=Journal of Mammalogy |volume=85|pages=113–119 |year=2004 |last1=Keeley |first1=A. T. H. |last2=Keeley |first2=B. W.|doi-access=free }}</ref> There appears to be bias towards certain males among females in these bats.<ref name="MacDonald"/> In a few species, such as the yellow-winged bat and spectral bat, adult males and females form [[Monogamy in animals|monogamous]] pairs.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|page=197}} [[Lek mating]], where males aggregate and compete for female choice through display, is rare in bats<ref>{{cite journal |author1=Toth, C. A. |author2=Parsons, S. |year=2013 |title=Is lek breeding rare in bats? |journal=Journal of Zoology |volume=291 |issue=1 |pages=3–11 |doi=10.1111/jzo.12069}}</ref> but occurs in the hammerheaded bat.<ref>{{cite journal |last=Bradbury |first=J. W. |year=1977 |title=Lek Mating Behavior in the Hammer-headed Bat |journal=Zeitschrift für Tierpsychologie |volume=45 |issue=3 |pages=225–255 |doi=10.1111/j.1439-0310.1977.tb02120.x |url=https://zenodo.org/record/8204647 }}</ref>
For temperate living bats, mating takes place in late summer and early autumn.{{sfn|Altringham|2011|page=105}} Tropical bats may mate during the dry season.<ref>{{cite journal |author1=Mares, M. A. |author2=Wilson, D. E. |year=1971 |title=Bat Reproduction during the Costa Rican Dry Season |journal=BioScience |volume=21 |issue=10 |pages=471–472+477|doi=10.2307/1295789 |jstor=1295789}}</ref> After copulation, the male may leave behind a [[mating plug]] to block the sperm of other males and thus ensure his paternity.<ref name="CrichtonKrutzsch2000">{{cite book|author1=Elizabeth G. Crichton|author2=Philip H. Krutzsch|title=Reproductive Biology of Bats|url=https://books.google.com/books?id=f1aNgZwGsYoC|date=12 June 2000|publisher=Academic Press|isbn=978-0-08-054053-5}}</ref> In hibernating species, males are known to mate with females in torpor.<ref name="MacDonald"/> Female bats use a variety of strategies to control the timing of pregnancy and the birth of young, to make delivery coincide with maximum food ability and other ecological factors. Females of some species have delayed fertilisation, in which sperm is stored in the reproductive tract for several months after mating. Mating occurs in late summer to early autumn but fertilisation does not occur until the following late winter to early spring. Other species exhibit [[delayed implantation]], in which the egg is fertilised after mating, but remains free in the reproductive tract until external conditions become favourable for giving birth and caring for the offspring.{{sfn|Altringham|2011|page=114–119}} In another strategy, fertilisation and implantation both occur, but development of the foetus is delayed until good conditions prevail. During the delayed development the mother keeps the fertilised egg alive with nutrients. This process can go on for a long period, because of the advanced gas exchange system.<ref>{{cite book |title=Biology of Bats |url=https://books.google.com/books?id=Gtp4yWnPD9YC&q=Biology+Bats |author1=Neuweiler, G. |publisher=Oxford University Press |year=2000 |page=247 |isbn=978-0-19-509950-8}}</ref>
[[File:Pipistrellus pipistrellus baby.jpg|thumb|right|Newborn common pipistrelle, ''Pipistrellus pipistrellus'']]
For temperate living bats, births typically take place in May or June in the northern hemisphere; births in the southern hemisphere occur in November and December. Tropical species give birth at the beginning of the rainy season.<ref>{{cite book |author=Fenton, M. B. |year=1983 |title=Just Bats |publisher=University of Toronto Press |isbn=978-1442655386 |url=https://books.google.com/books?id=cueMBgAAQBAJ&q=bat+breeding+seasons&pg=PT100}}</ref> In most bat species, females carry and give birth to a single pup per litter.<ref>{{cite book |author1=Kunz, T. H. |author2=Fenton, B. |year=2005 |title=Bat Ecology |publisher=University of Chicago Press |page=216 |isbn=978-0226462073}}</ref> At birth, a bat pup can be up to 40 percent of the mother's weight,<ref name="MacDonald"/> and the pelvic girdle of the female can expand during birth as the two-halves are connected by a flexible ligament.{{sfn|Fenton|2001|page=166}} Females typically give birth in a head-up or horizontal position, using gravity to make birthing easier. The young emerges rear-first, possibly to prevent the wings from getting tangled, and the female cradles it in her wing and tail membranes. In many species, females give birth and raise their young in [[Maternity colony (bats)|maternity colonies]] and may assist each other in birthing.<ref>{{cite book |author1=Nagorsen, D. W. |author2=Brigham, R. M. |title=Bats of British Columbia |publisher=UBC Press |page=17 |isbn=978-0774804820|year=1993 }}</ref>{{sfn|Altringham|2011|page=119}}{{sfn|Fenton|2001|page=166}}
Most of the care for a young bat comes from the mother. In monogamous species, the father plays a role. Allo-suckling, where a female suckles another mother's young, occurs in several species. This may serve to increase colony size in species where females return to their natal colony to breed.<ref name="MacDonald"/> A young bat's ability to fly coincides with the development of an adult body and forelimb length. For the little brown bat, this occurs about eighteen days after birth. Weaning of young for most species takes place in under eighty days. The common vampire bat nurses its offspring beyond that and young vampire bats achieve independence later in life than other species. This is probably due to the species' blood-based diet, which is difficult to obtain on a nightly basis.{{sfn|Fenton|Simmons|2015|page=171}}
===Life expectancy===
[[File:The Bat Scientists Lauri Lutsar.jpg|thumb|right|The bat scientist Lauri Lutsar is checking the age of the bat he is holding as part of a national monitoring program in [[Estonia]]]]
The maximum lifespan of bats is three-and-a-half times longer than other mammals of similar size. Six species have been recorded to live over thirty years in the wild: the brown long-eared bat (''Plecotus auritus''), the little brown bat (''Myotis lucifugus''), the [[Siberian bat]] (''Myotis sibiricus''), the [[lesser mouse-eared bat]] (''Myotis blythii'') the [[greater horseshoe bat]] (''Rhinolophus ferrumequinum''), and the [[Indian flying fox]] (''Pteropus giganteus'').<ref>{{cite book |title= Walker's Mammals of the World |first= Ronald M. |last=Nowak |edition= illustrated |publisher= JHU Press |year= 1999 |isbn= 978-0801857898 |page= 269}}</ref> One hypothesis consistent with the [[rate-of-living theory]] links this to the fact that they slow down their [[metabolic rate]] while [[hibernating]]; bats that hibernate, on average, have a longer lifespan than bats that do not.<ref>{{cite journal |first1=C. |last1=Turbill |first2=C. |last2=Bieber |first3=T. |last3=Ruf |year=2011 |title=Hibernation is associated with increased survival and the evolution of slow life histories among mammals |journal=Proceedings of the Royal Society B |volume=278 |issue=1723 |pages=3355–3363 |doi=10.1098/rspb.2011.0190 |pmc=3177628 |pmid=21450735}}</ref><ref name=wilkinson2002/>
Another hypothesis is that flying has reduced their mortality rate, which would also be true for birds and gliding mammals. Bat species that give birth to multiple pups generally have a shorter lifespan than species that give birth to only a single pup. Cave-roosting species may have a longer lifespan than non-roosting species because of the decreased predation in caves. A male Siberian bat was recaptured in the wild after 41 years, making it the oldest known bat.<ref name=wilkinson2002>{{cite journal |url =http://www.life.umd.edu/faculty/wilkinson/Wilk_South02.pdf |title=Life history, ecology and longevity in bats |first1=G. S. |last1=Wilkinson |first2=J. M. |last2=South |journal=Aging Cell |year=2002 |volume=1 |issue=2 |pages=124–131 |doi=10.1046/j.1474-9728.2002.00020.x |pmid=12882342|s2cid=855367 }}</ref><ref>{{cite journal |first1=Y. |last1=Gager |first2=O. |last2=Gimenez |first3=M. T. |last3=O'Mara |first4=D. K. N. |last4=Dechmann |year=2016 |title=Group size, survival and surprisingly short lifespan in socially foraging bats |journal=BMC Ecology |volume=16 |issue=2 |pages=2 |doi=10.1186/s12898-016-0056-1 |pmc=4714502 |pmid=26767616 |doi-access=free |bibcode=2016BMCE...16....2G }}</ref>
==Interactions with humans==
{{Main|Human uses of bats}}
===Conservation<!--linked from [[bat conservation]]-->===
{{See also|List of bats by population}}
{{Pie chart
| caption=Conservation statuses of bats as of 2020 according to the IUCN (1,314 species in total)<ref>{{cite web|url=https://www.iucnredlist.org/search/stats| title=Taxonomy: Chiroptera| website=IUCN Red List of Threatened Species| access-date=14 December 2020}}</ref>
|other =
|value1 = 1.6
|label1 = Critically endangered
|value2 = 6.3
|label2 = Endangered
|value3 = 8.3
|label3 = Vulnerable
|value4 = 6.7
|label4 = Near-threatened
|value5 = 58.0
|label5 = Least concern
|value6 = 18.4
|label6 = Data deficient
|value7 = 0.7
|label7 = Extinct}}
Groups such as the [[Bat Conservation International]]<ref>{{cite web |title=Mission & Vision |url=http://www.batcon.org/about-us/about-bci/mission-vision |publisher=Bat Conservation International |access-date=16 November 2017}}</ref> aim to increase awareness of bats' ecological roles and the environmental threats they face. In the United Kingdom, all bats are protected under the [[Wildlife and Countryside Act]]s, and disturbing a bat or its roost can be punished with a heavy fine.<ref>{{cite web |title=Bats and the Law |url=http://www.bats.org.uk/pages/bats_and_the_law.html |publisher=Bat Conservation Trust |access-date=16 November 2017}}</ref>
In [[Sarawak]], Malaysia, "all bats"<ref name=WPO1998/> are protected under the [[Malaysian Wildlife Law|Wildlife Protection Ordinance 1998]],<ref name=WPO1998>{{cite web |title=Wildlife Protection Ordinance 1998 |url=http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf |publisher=FAO |access-date=16 November 2017 |archive-date=17 November 2017 |archive-url=https://web.archive.org/web/20171117002846/http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf |url-status=dead }}</ref> but species such as the [[hairless bat]] (''Cheiromeles torquatus'') are still eaten by the local communities.<ref>{{cite journal |author1=Leong, T. M. |author2=Teo, S. C. |author3=Lim, K. K. P. |year=2009 |title=The Naked Bulldog Bat, ''Cheiromeles torquatus'' in Singapore – past and present records, with highlights on its unique morphology (Microchiroptera: Molossidae) |journal=Nature in Singapore |volume=2 |pages=215–230}}</ref> Humans have caused the extinction of several species of bat in modern history, the most recent being the [[Christmas Island pipistrelle]] (''Pipistrellus murrayi''), which was declared extinct in 2009.<ref>{{cite book|author1=Ceballos, G. |author2=Ehrlich, A. H. |author3=Ehrlich, P. R. |year=2015|title=The Annihilation of Nature: Human Extinction of Birds and Mammals|publisher=Johns Hopkins University Press|pages=75–76|isbn=978-1421417189}}</ref>
Many people put up bat houses to attract bats.<ref>{{cite web |title=All about bats |url=http://www.batcon.org/ |publisher=Bat Conservation International |date=24 January 2002 |url-status=dead |archive-url=https://web.archive.org/web/20130623184422/http://batcon.org/ |archive-date=23 June 2013}}</ref> The 1991 [[University of Florida]] bat house is the largest occupied artificial roost in the world, with around 400,000 residents.<ref>{{Cite web |url=https://www.flmnh.ufl.edu/index.php/bats/home/ |title=Welcome to the World's Largest Occupied Bat Houses |publisher=Florida Museum of Natural History |access-date=18 December 2017}}</ref> In Britain, thickwalled and partly underground [[British hardened field defences of World War II|World War II pillboxes]] have been converted to make roosts for bats,<ref>{{cite web |url=http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf |title=Protecting and managing underground sites for bats, see section 6.4. |publisher=Eurobats |access-date=18 May 2006 |url-status=dead |archive-url=https://web.archive.org/web/20120512092008/http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf |archive-date=12 May 2012}}</ref><ref>{{cite news |url=http://news.bbc.co.uk/1/hi/england/4885642.stm |title=Pillbox converted to bat retreat |publisher=BBC |access-date=18 May 2006 |date=6 April 2006}}</ref> and purpose-built bat houses are occasionally built to mitigate damage to habitat from road or other developments.<ref>{{Cite web |url=http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/7330846.stm |title=Bypass wings it with bat bridges |date=4 April 2008 |publisher=BBC |access-date=21 August 2016}}</ref><ref>{{Cite web |url=http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/8320610.stm |title=Bat bridges cost £27k per animal |date=22 October 2009 |publisher=BBC |access-date=21 August 2016}}</ref> [[Cave gate]]s are sometimes installed to limit human entry into caves with sensitive or endangered bat species. The gates are designed not to limit the airflow, and thus to maintain the cave's micro-ecosystem.<ref name="AGENCY">{{cite web |url=http://www.batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf |title=Agency Guide to Cave and Mine Gates 2009 |website=Batcon.org |access-date=1 November 2017 |archive-date=20 October 2012 |archive-url=https://web.archive.org/web/20121020143210/http://batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf |url-status=dead }}</ref> Of the 47 species of bats found in the United States, 35 are known to use human structures, including buildings and bridges. Fourteen species use bat houses.<ref>{{cite book |last1=Pfeiffer |first1=Martin J. |title=Bats, People, and Buildings: Issues and Opportunities |date=February 2019 |publisher=United States Department of Agriculture, Forest Service, Forest Products Laboratory |location=Madison, WI |url=https://purl.fdlp.gov/GPO/gpo117356 |access-date=26 March 2019}}</ref>
[[Bat as food|Bats are eaten]] in countries across Africa, Asia and the Pacific Rim. In some cases, such as in Guam, flying foxes have become endangered through being hunted for food.<ref>{{cite book |last1=Hopkins |first1=J. |last2=Bourdain |first2=A. |title=Extreme Cuisine: The Weird & Wonderful Foods that People Eat |url=https://books.google.com/books?id=DJDKaxEEfYgC&pg=PA51 |year=2004 |publisher=Periplus |isbn=978-0-7946-0255-0 |page=51}}</ref> There is evidence that suggests that [[wind turbine]]s might create sufficient [[barotrauma]] (pressure damage) to kill bats.<ref name="BaerwaldD'Amours2008">{{cite journal |last1=Baerwald |first1=E. F. |last2=D'Amours |first2=G. H. |last3=Klug |first3=B. J. |last4=Barclay |first4=R. M. R. |title=Barotrauma is a significant cause of bat fatalities at wind turbines |journal=Current Biology |volume=18 |issue=16 |year=2008 |pages=R695–R696 |doi=10.1016/j.cub.2008.06.029 |pmid=18727900|s2cid=17019562 |doi-access=free }}</ref> Bats have typical [[Lung#Mammalian lungs|mammalian lungs]], which are thought to be more sensitive to sudden air pressure changes than [[Avian lungs|the lungs of birds]], making them more liable to fatal rupture.<ref name="nww">{{Cite journal|url=http://www.wind-watch.org/news/2008/09/23/bc-study-to-help-bats-survive-wind-farms/ |title=B.C. study to help bats survive wind farms |journal=National Wind Watch |date=23 September 2008 |access-date=19 April 2015}}</ref><ref>"[https://www.newscientist.com/article/dn11834 Bats take a battering at wind farms]", ''[[New Scientist]]'', 12 May 2007</ref><ref>{{cite web |url=http://vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf |publisher=Bat Conservation International |title=Caution Regarding Placement of Wind Turbines on Wooded Ridge Tops |date=4 January 2005 |access-date=21 April 2006 |archive-url=https://web.archive.org/web/20060523210423/http://www.vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf |archive-date=23 May 2006 |url-status=dead}}</ref><ref>{{cite web |url=http://batcon.org/wind/BWEC2004finalreport.pdf |publisher=Bat Conservation International |title=Relationships between Bats and Wind Turbines in Pennsylvania and West Virginia: An Assessment of Fatality Search Protocols, Patterns of Fatality, and Behavioral Interactions with Wind Turbines |access-date=21 April 2006 |date=12 June 2005 |first=E. B. |last=Arnett |author2=Erickson, W. P. |author3=Kerns, J. |author4=Horn, J. |archive-url=https://web.archive.org/web/20060210183113/http://batcon.org/wind/BWEC2004finalreport.pdf |archive-date=10 February 2006}}</ref><ref>{{cite journal |last=Baerwald |first=E. F. |author2=D'Amours, G.H. |author3=Klug, Brandon J. |author4=Barclay, R. M. R. |date=26 August 2008 |title=Barotrauma is a significant cause of bat fatalities at wind turbines |journal=[[Current Biology]] |volume=18 |issue=16 |pages=R695–R696 |doi=10.1016/j.cub.2008.06.029 |oclc=252616082 |pmid=18727900|s2cid=17019562 |doi-access=free }}<!-- this study does not appear to include any measurements or calculations of pressure in the vicinity of the turbine blades, which would seem an obvious subject to investigate. --></ref> Bats may be attracted to turbines, perhaps seeking roosts, increasing the death rate.<ref name="nww"/> Acoustic deterrents may help to reduce bat mortality at wind farms.<ref>{{cite book |last1=Johnson |first1=J. B. |first2=W. M. |last2=Ford |first3=J. L. |last3=Rodrigue |first4=J. W. |last4=Edwards |year=2012 |url=https://purl.fdlp.gov/GPO/gpo36973 |title=Effects of Acoustic Deterrents on Foraging Bats |publisher=U.S. Department of Agriculture, U.S. Forest Service, Northern Research Station |pages=1–5}}</ref>
The [[diagnosis]] and contribution of barotrauma to bat deaths near wind turbine blades have been disputed by other research comparing dead bats found near wind turbines with bats killed by impact with buildings in areas with no turbines.<ref name="Rollins et al.">{{cite journal |last1=Rollins |first1=K.E. |title=A Forensic Investigation Into the Etiology of Bat Mortality at a Wind Farm: Barotrauma or Traumatic Injury? |journal=Veterinary Pathology |volume=49 |issue=2 |date = January 2012 |last2=Meyerholz |first2=D. |last3=Johnson |first3=D. |last4=Capparella |first4=A. |last5=Loew |first5=S. |pages=362–371 |doi=10.1177/0300985812436745 |pmid=22291071 |s2cid=11189743 |doi-access= }}</ref>
===Cultural significance<!--A link to here is in: Animal#In human culture.-->===
[[File:Francisco José de Goya y Lucientes - The sleep of reason produces monsters (No. 43), from Los Caprichos - Google Art Project.jpg|thumb|upright|[[Francisco de Goya]], ''The Sleep of Reason Produces Monsters'', 1797]]
Since bats are mammals, yet can fly, they are considered to be [[liminal being]]s in various traditions.<ref>{{cite journal |last=McCracken |first=G. F. |title=Folklore and the Origin of Bats |journal=BATS Magazine |year=1993 |volume=11 |series=Bats in Folklore |issue=4}}</ref> In many cultures, including in Europe, bats are associated with darkness, death, witchcraft, and malevolence.<ref name="symbols">{{cite book |author=Chwalkowski, F. |year=2016 |title=Symbols in Arts, Religion and Culture: The Soul of Nature |publisher=Cambridge Scholars Publishing |page=523 |isbn=978-1443857284}}</ref> Among [[Native Americans in the United States|Native Americans]] such as the [[Creek (people)|Creek]], [[Cherokee]] and [[Apache Tribe|Apache]], the bat is identified as a [[trickster]].<ref>{{cite book|author=Chwalkowski, Farrin|year=2016|title=Symbols in Arts, Religion and Culture: The Soul of Nature|publisher=Cambridge Scholars Publishing|page=523|isbn=978-1443857284}}</ref> In Tanzania, a winged batlike creature known as [[Popobawa]] is believed to be a shapeshifting [[evil spirit]] that assaults and [[sodomises]] its victims.<ref>{{cite web |last=Saleh |first=A. |date=19 July 2001 |title=Sex-mad 'ghost' scares Zanzibaris |url=http://news.bbc.co.uk/1/hi/world/africa/1446733.stm |work=BBC News |access-date=29 December 2014}}</ref> In [[Aztec]] [[mythology]], bats symbolised the land of the dead, destruction, and decay.<ref>{{cite web |url=http://www.aztec-history.net/aztec_symbols |title=Aztec Symbols |publisher=Aztec-history.net |access-date=24 June 2013}}</ref><ref name=ReadGonzalez>{{cite book |author1=Read, K. A. |author2=Gonzalez, J. J. |year=2000 |title=Mesoamerican Mythology |publisher=Oxford University Press |pages=[https://archive.org/details/mesoamericanmyth0000read/page/132 132–134] |isbn=978-0195149098 |url=https://archive.org/details/mesoamericanmyth0000read/page/132 }}</ref><ref>{{cite web |url=http://www.oaxacanwoodcarving.com/mythnatr.html |title=Artists Inspired by Oaxaca Folklore Myths and Legends |publisher=Oaxacanwoodcarving.com |access-date=24 June 2013 |url-status=dead |archive-url=https://web.archive.org/web/20131110172458/http://www.oaxacanwoodcarving.com/mythnatr.html |archive-date=10 November 2013}}</ref><!--<ref>Berrin, Katherine & Larco Museum. ''The Spirit of Ancient Peru:Treasures from the [[Larco Museum|Museo Arqueológico Rafael Larco Herrera]].'' New York: [[Thames and Hudson]], 1997.</ref>--> An East Nigerian tale tells that the bat developed its nocturnal habits after causing the death of his partner, the bush-rat, and now hides by day to avoid arrest.<ref name=Arnott1962>{{cite book |author=Arnott, K. |year=1962 |title=African Myths and Legends |publisher=Oxford University Press |pages=150–152}}</ref>
More positive depictions of bats exist in some cultures. In China, bats have been associated with happiness, joy and good fortune. Five bats are used to symbolise the "Five Blessings": longevity, wealth, health, love of virtue and peaceful death.<ref>{{cite web|title=Chinese symbols|publisher=British Museum|access-date=10 September 2017|url=https://www.britishmuseum.org/pdf/Chinese_symbols_1109.pdf}}</ref> The bat is sacred in [[Tonga]] and is often considered the physical manifestation of a separable [[Soul (spirit)|soul]].<ref>{{cite web |author=Grant, G. S. |url=http://www.batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757 |title=Kingdom of Tonga: Safe Haven for Flying Foxes |publisher=Batcon.org |access-date=24 June 2013 |archive-date=12 August 2014 |archive-url=https://web.archive.org/web/20140812231111/http://batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757 |url-status=dead }}</ref> In the [[Zapotec civilisation]] of Mesoamerica, the bat god presided over corn and fertility.<ref>{{cite web|last1=Cartwright |first1=M. |title=Zapotec Civilization |url=https://www.worldhistory.org/Zapotec_Civilization/ |publisher=[[World History Encyclopedia]] |access-date=2 December 2017 |date=28 October 2013}}</ref>
[[File:Bat god, Zapotec, Period III-A - Mesoamerican objects in the American Museum of Natural History - DSC06023.JPG|thumb|upright|left|[[Zapotec civilization|Zapotec]] bat god, [[Oaxaca]], 350–500 CE]]
The [[Weird Sisters]] in Shakespeare's ''[[Macbeth]]'' used the fur of a bat in their brew.<ref name="deVries76">{{cite book |last=de Vries |first=A. |title=Dictionary of Symbols and Imagery |year=1976 |page=[https://archive.org/details/dictionaryofsymb0000vrie/page/36 36] |publisher=North-Holland |location=Amsterdam |isbn=978-0-7204-8021-4 |url=https://archive.org/details/dictionaryofsymb0000vrie/page/36 }}</ref> In [[Western culture]], the bat is often a symbol of the night and its foreboding nature. The bat is a primary animal associated with fictional characters of the night, both villainous [[vampire]]s, such as [[Count Dracula]] and before him ''[[Varney the Vampire]]'',<ref>{{cite journal |last1=Miller |first1=Elizabeth |title=Bats, Vampires & Dracula |journal=Newsletter of the Florida Bat Conservation Centre |date=1998 |issue=Fall 1998 |url=http://www.ucs.mun.ca/~emiller/bats_vamp_drac.html |access-date=19 December 2017}}</ref> and heroes, such as the [[DC Comics]] character [[Batman]].<ref name=Fleisher>{{cite book |author=Fleisher, M. L. |title=The Encyclopedia of Comic Book Heroes Volume 1 Batman |publisher=Collier Books |year=1976 |isbn=978-0-02-080090-3 |page=31}}</ref> [[Kenneth Oppel]]'s [[Silverwing (series)|Silverwing novels]] narrate the adventures of a young bat,<ref>{{cite web |title=Silverwing by Kenneth Oppel |url=https://www.kirkusreviews.com/book-reviews/kenneth-oppel/silverwing/ |publisher=Kirkus Reviews |access-date=25 September 2017|year=1997}}</ref> based on the [[silver-haired bat]] of North America.<ref>{{cite web |last1=Oppel |first1=K. |title=The Characters: Shade |url=http://www.kennethoppel.ca/silverwing/shade.shtml |publisher=Kenneth Oppel |access-date=25 September 2017 |quote="Shade is based on a Silver-Haired Bat. I thought they were very dashing-looking creatures. I liked the fact this was a bat that lived in the same part of the world as me (eastern Canada). These are small creatures, with a wing span of a few inches. Their bodies are about the same size as mice. They're insectivores, which means they eat only insects." – K.O. |archive-url=https://web.archive.org/web/20170926043235/http://www.kennethoppel.ca/silverwing/shade.shtml |archive-date=26 September 2017 |url-status=dead}}</ref>
The bat is sometimes used as a [[Bat (heraldry)|heraldic symbol]] in Spain and France, appearing in the coats of arms of the towns of [[Valencia]], [[Palma de Mallorca]], [[Fraga]], [[Albacete]], and [[Montchauvet, Yvelines|Montchauvet]].<ref name="cervantesvirtual.com">{{cite web |url=http://www.cervantesvirtual.com/FichaObra.html?Ref=23879&portal=33 |author=Tramoyeres Blasco, L. |title=Lo Rat Penat en el escudo de armas de Valencia |trans-title=The Rat Penat in the coat of arms of Valencia |language=es |access-date=14 November 2014}}</ref><ref>{{cite book |author=Alomar i Canyelles, A. I. |title=L'Estendard, la festa nacional més antiga d'Europa |trans-title=The Banner, the oldest national party in Europe|pages=xiii–xxi |location=Palma |year=1998}}</ref><ref name="ifc.dpz.es">{{cite journal |title=Estudio de los escudos recogidos en la orla de latabla de la magistratura |trans-title=Study of the shields collected in the border of the board of the judiciary |url=http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf |url-status=dead |archive-url=https://web.archive.org/web/20170910130155/http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf |archive-date=10 September 2017 |journal=Emblemata Revista Aragonesa de Emblematica |year=2005 |language=es |volume=6 |page=242}}</ref> Three US states have an official [[List of U.S. state bats|state bat]]. Texas and Oklahoma are represented by the Mexican free-tailed bat, while Virginia is represented by the [[Virginia big-eared bat]] (''Corynorhinus townsendii virginianus'').<ref>{{cite web|url=http://www.netstate.com/states/tables/state_bats.htm |title=Official state bats |access-date=13 February 2011 |publisher=Netstate |archive-url=https://web.archive.org/web/20101220083516/http://netstate.com/states/tables/state_bats.htm |archive-date=20 December 2010 |url-status=dead}}</ref>
===Economics===
Insectivorous bats in particular are especially helpful to farmers, as they control populations of agricultural pests and reduce the need to use [[pesticide]]s. It has been estimated that bats save the agricultural industry of the United States anywhere from [[USD|$]]3.7{{nbsp}}billion to $53{{nbsp}}billion per year in pesticides and damage to crops. This also prevents the overuse of pesticides, which can pollute the surrounding environment, and may lead to resistance in future generations of insects.<ref>{{cite journal |first1=Justin G. |last1=Boyles |first2=Paul M. |last2=Cryan |first3=Gary F. |last3=McCracken |first4=Thomas H. |last4=Kunz |year=2011 |title=Economic Importance of Bats in Agriculture |journal=Science |volume=332 |issue=6025 |pages=41–42 |doi=10.1126/science.1201366 |pmid=21454775|bibcode=2011Sci...332...41B |s2cid=34572622 }}</ref>
Bat dung, a type of [[guano]], is rich in nitrates and is mined from caves for use as [[fertiliser]].<ref>{{cite book |last=Weaver |first=H. D. |title=Missouri Caves in History and Legend |url=https://archive.org/details/missouricavesinh00weav |url-access=registration |year=2008 |publisher=University of Missouri Press |isbn=978-0-8262-6645-3 |pages=[https://archive.org/details/missouricavesinh00weav/page/64 64]–69}}</ref> During the [[US Civil War]], [[saltpetre]] was collected from caves to make [[gunpowder]]. At the time, it was believed that the nitrate all came from the bat guano, but it is now known that most of it is produced by [[nitrifying bacteria]].<ref>{{cite journal |last1=Whisonant |first1=R. C. |title=Geology and History of Confederate Saltpeter Cave Operations in Western Virginia |journal=Virginia Minerals |year=2001 |volume=47 |issue=4 |pages=33–43 |url=https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf |access-date=24 September 2017 |archive-date=27 December 2016 |archive-url=https://web.archive.org/web/20161227063809/https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf |url-status=dead }}</ref>
The [[Ann W. Richards Congress Avenue Bridge|Congress Avenue Bridge]] in [[Austin, Texas]], is the summer home to North America's largest urban bat colony, an estimated 1,500,000 Mexican free-tailed bats. About 100,000 tourists a year visit the bridge at twilight to watch the bats leave the roost.<ref>{{Cite web |author=Christensen, RaeAnn |url=http://www.fox7austin.com/news/local-news/165481229-story |title=Best time to see the bat colony emerge from Congress Bridge in Downtown Austin |publisher=Fox7 |access-date=21 August 2016 |archive-url=https://web.archive.org/web/20161019073438/http://www.fox7austin.com/news/local-news/165481229-story |archive-date=19 October 2016 |url-status=dead }}</ref>
== See also ==
* {{annotated link|Bat detector}}
== Explanatory notes ==
{{Notelist}}
== References ==
{{Reflist}}
=== Sources ===
* {{cite book |last=Altringham |first=J. D. |year=2011 |title=Bats: From Evolution to Conservation |publisher=Oxford University Press |isbn=978-0199207114 }}
* {{cite book |last=Fenton |first=M. B. |year=2001 |title=Bats |publisher=Checkmark Books |isbn=978-0-8160-4358-3 }}
* {{cite book |last1=Fenton |first1=M. B. |last2=Simmons |first2=N. B. |year=2015 |title=Bats: A World of Science and Mystery |publisher=University of Chicago Press |isbn=978-0226065120 }}
== External links ==
{{Commons category}}
{{Wikibooks|Dichotomous Key|Chiroptera}}
{{Wikispecies|Chiroptera}}
* {{oweb|http://www.bats.org.uk/pages/about_bats.html}} of UK Bat Conservation Trust
* [http://tolweb.org/tree?group=Chiroptera&contgroup=Eutheria Tree of Life]
* [http://www.fladdermus.net/thesis.htm Microbat Vision] {{Webarchive|url=https://web.archive.org/web/20200129210527/http://www.fladdermus.net/thesis.htm |date=29 January 2020 }}
* [http://www.hscott.net/the-dsp-behind-bat-echolocation/ Analyses of several kinds of bat echolocation]
{{Mammals}}
{{Taxonbar|from=Q28425}}
{{Authority control}}
[[Category:Bats| ]]
[[Category:Animal flight]]
[[Category:Animals that use echolocation]]
[[Category:Articles containing video clips]]
[[Category:Cave mammals]]
[[Category:Extant Ypresian first appearances]]
[[Category:Nocturnal animals]]
[[Category:Taxa named by Johann Friedrich Blumenbach]]' |
New page wikitext, after the edit (new_wikitext ) | '''' '''Bold text''''''
BAT' |
Unified diff of changes made by edit (edit_diff ) | '@@ -1,634 +1,2 @@
-{{Short description|Order of flying mammals}}
-{{About||the sporting equipment|Baseball bat|and|Cricket bat|and|Table tennis bat|other uses}}
-{{Redirect-multi|2|Bats|Chiroptera}}{{Use dmy dates|date=November 2020}}
-{{Featured article}}
-{{Use British English|date=November 2017}}
-{{Automatic taxobox
-| name = Bat
-| fossil_range = {{Fossil range|52|0|[[Eocene]]–[[Holocene|Present]]}}
-| image = <imagemap>
-File:Wikipedia-Bats-001-v01.jpg|300px
-rect 0 0 820 510 [[Common vampire bat]]
-rect 0 510 820 950 [[Greater horseshoe bat]]
-rect 0 950 820 1560 [[Greater short-nosed fruit bat]]
-rect 1520 0 820 510 [[Egyptian fruit bat]]
-rect 1520 510 820 950 [[Mexican free-tailed bat]]
-rect 1520 950 820 1560 [[Greater mouse-eared bat]]
-</imagemap>
-| display_parents = 2
-| taxon = Chiroptera
-| authority = [[Johann Friedrich Blumenbach|Blumenbach]], 1779
-| subdivision_ranks = Suborders
-| subdivision = (traditional):
-* [[Megachiroptera]]
-* [[Microchiroptera]]
-(present):
-* [[Yinpterochiroptera]]
-* [[Yangochiroptera]]
-| range_map = Bat range.png
-| range_map_caption = Worldwide distribution of bat species
-}}
-
-'''Bats''' are flying [[mammal]]s of the [[Order (biology)|order]] '''Chiroptera''' ({{IPAc-en|k|aɪ|ˈ|ɹ|ɒ|p|t|ə|ɹ|ə}}).{{efn|from the {{lang-grc|χείρ}}{{snd}}''cheir'', "hand" and πτερόν{{snd}}''pteron'', "wing".<ref name=EB1911>{{cite EB1911 |short=1<!--suppress ed. forename--> |wstitle=Chiroptera |volume=6 |pages=239–247}}</ref>}} With their forelimbs adapted as [[wing]]s, they are the only mammals capable of true and sustained [[flight]]. Bats are more agile in flight than most birds, [[Bat flight|flying]] with their very long spread-out digits covered with a thin membrane or [[patagium]]. The smallest bat, and arguably the [[Smallest organisms|smallest extant mammal]], is [[Kitti's hog-nosed bat]], which is {{convert|29|-|34|mm|in|frac=8|abbr=off}} in length, {{convert|150|mm|in|frac=2|abbr=on}} across the wings and {{convert|2|-|2.6|g|abbr=on|frac=32}} in mass. The largest bats are the [[flying foxes]], with the [[giant golden-crowned flying fox]] (''Acerodon jubatus'') reaching a weight of {{convert|1.6|kg|lb|frac=4|abbr=on}} and having a wingspan of {{convert|1.7|m|ftin|abbr=on|0}}.
-
-The second largest order of mammals after [[rodents]], bats comprise about 20% of all classified mammal species worldwide, with over 1,400 species. These were traditionally divided into two suborders: the largely fruit-eating [[megabat]]s, and the [[Animal echolocation|echolocating]] [[microbat]]s. But more recent evidence has supported dividing the order into [[Yinpterochiroptera]] and [[Yangochiroptera]], with megabats as members of the former along with several species of microbats. Many bats are [[insectivore]]s, and most of the rest are [[frugivore]]s (fruit-eaters) or [[nectarivore]]s (nectar-eaters). A few species feed on animals other than insects; for example, the [[vampire bat]]s [[Hematophagy|feed on blood]]. Most bats are [[nocturnal]], and many roost in caves or other refuges; it is uncertain whether bats have these behaviours to escape [[predator]]s. Bats are present throughout the world, with the exception of extremely cold regions. They are important in their ecosystems for [[pollinator|pollinating]] [[flower]]s and dispersing seeds; many tropical plants depend entirely on bats for these services.
-
-Bats provide humans with some direct benefits, at the cost of some disadvantages. Bat dung has been mined as [[guano]] from caves and used as fertiliser. Bats consume insect pests, reducing the need for [[pesticide]]s and other insect management measures. They are sometimes numerous enough and close enough to human settlements to serve as tourist attractions, and they are used as food across Asia and the [[Pacific Rim]]. However, fruit bats are frequently considered pests by fruit growers. Due to their physiology, bats are one type of animal that acts as a [[natural reservoir]] of many [[pathogen]]s, such as [[rabies]]; and since they are highly mobile, social, and long-lived, they can readily spread disease among themselves. If humans interact with bats, these traits become potentially dangerous to humans. Some bats are also predators of [[mosquito]]es, suppressing the transmission of [[mosquito-borne disease]]s.
-
-Depending on the culture, bats may be symbolically associated with positive traits, such as protection from certain diseases or risks, rebirth, or long life, but in the West, bats are popularly associated with darkness, malevolence, witchcraft, [[vampire]]s, and death.
-
-== Etymology ==
-
-An older English name for bats is [[wikt:flittermouse|flittermouse]], which matches their name in other [[Germanic languages]] (for example German ''Fledermaus'' and Swedish ''fladdermus''), related to the fluttering of wings. [[Middle English]] had ''bakke'', most likely cognate with Old Swedish ''natbakka'' ("night-bat"), which may have undergone a shift from ''-k-'' to ''-t-'' (to Modern English ''bat'') influenced by Latin ''blatta'', "moth, nocturnal insect". The word "bat" was probably first used in the early 1570s.<ref>{{cite web |url=http://www.dictionary.com/browse/bat?s=ts |title=Bat |publisher=Dictionary.com |access-date=9 September 2017}}</ref><ref>{{cite web |url=http://www.etymonline.com/index.php?term=bat |title=Bat, noun 2 |publisher=Online Etymology Dictionary |access-date=24 June 2013}}</ref> The name "Chiroptera" derives from {{lang-grc|χείρ}}{{snd}}''cheir'', "hand"<ref>{{cite web |url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dxei%2Fr |title=χείρ |publisher=A Greek-English Lexicon |editor1=Liddell, Henry G.|editor2=Scott, Robert |access-date=9 September 2017}}</ref> and πτερόν{{snd}}''pteron'', "wing".<ref name="EB1911"/><ref>{{cite web |url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dptero%2Fn |title=πτερόν |publisher=A Greek-English Lexicon |editor1=Liddell, Henry G.|editor2=Scott, Robert |access-date=9 September 2017}}</ref>
-
-== Phylogeny and taxonomy ==
-
-[[File:Batfossil.jpg|thumb|upright|The early [[Eocene]] fossil microchiropteran ''[[Icaronycteris]]'', from the [[Green River Formation]]]]
-
-=== Evolution ===
-
-The delicate [[skeleton]]s of bats do not fossilise well; it is estimated that only 12% of bat [[genera]] that lived have been found in the fossil record.<ref>{{cite journal |last1=Eiting |first1=T. P. |last2=Gunnell |first2=G. F. |year=2009 |title=Global completeness of the bat fossil record |journal=Journal of Mammalian Evolution |volume=16 |issue=3 |pages=151–173 |doi=10.1007/s10914-009-9118-x|s2cid=5923450 }}</ref> Most of the oldest known bat fossils were already very similar to modern microbats, such as ''Archaeopteropus'' (32 million years ago). The oldest known bat fossils include ''Archaeonycteris praecursor'' and ''Altaynycteris aurora'' (55-56 million years ago), both known only from isolated teeth.<ref>{{Cite journal |last1=Tabuce |first1=Rodolphe |last2=Antunes |first2=Miguel Telles |last3=Sigé |first3=Bernard |date=2009-06-12 |title=A new primitive bat from the earliest Eocene of Europe |url=https://www.tandfonline.com/doi/full/10.1671/039.029.0204 |journal=Journal of Vertebrate Paleontology |language=en |volume=29 |issue=2 |pages=627–630 |doi=10.1671/039.029.0204 |bibcode=2009JVPal..29..627T |s2cid=86384840 |issn=0272-4634}}</ref><ref>{{Cite journal |last1=Jones |first1=Matthew F. |last2=Li |first2=Qiang |last3=Ni |first3=Xijun |last4=Beard |first4=K. Christopher |date=June 2021 |title=The earliest Asian bats (Mammalia: Chiroptera) address major gaps in bat evolution |journal=Biology Letters |language=en |volume=17 |issue=6 |pages=20210185 |doi=10.1098/rsbl.2021.0185 |pmid=34186001 |pmc=8241488 |issn=1744-957X}}</ref> The oldest complete bat skeleton is ''[[Icaronycteris]] gunnelli'' (52 million years ago), known from two skeletons discovered in Wyoming.<ref name=simmons2008 /><ref>{{Cite journal |last1=Rietbergen |first1=Tim B. |last2=Ostende |first2=Lars W. van den Hoek |last3=Aase |first3=Arvid |last4=Jones |first4=Matthew F. |last5=Medeiros |first5=Edward D. |last6=Simmons |first6=Nancy B. |date=2023-04-12 |title=The oldest known bat skeletons and their implications for Eocene chiropteran diversification |journal=PLOS ONE |language=en |volume=18 |issue=4 |pages=e0283505 |doi=10.1371/journal.pone.0283505 |doi-access=free |issn=1932-6203 |pmc=10096270 |pmid=37043445|bibcode=2023PLoSO..1883505R }}</ref> The extinct bats ''[[Palaeochiropteryx tupaiodon]]'' and ''[[Hassianycteris kumari]]'', both of which lived 48 million years ago, are the first fossil mammals whose colouration has been discovered: both were reddish-brown.<ref>{{cite web |url=http://www.sci-news.com/paleontology/science-original-color-extinct-bats-03283.html |title=Paleontologists Determine Original Color of Extinct Bats |date=29 September 2015 |access-date=10 September 2017 |publisher=SciNews}}</ref><ref>{{cite journal |first1=C. |last1=Colleary |first2=A. |last2=Dolocanc |first3=J. |last3=Gardnerd |first4=Suresh |last4=Singha |first5=M. |last5=Wuttkee |year=2015 |title=Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils |journal=Proceedings of the National Academy of Sciences of the United States of America|volume=112 |issue=41 |pages=12592–12597 |doi=10.1073/pnas.1509831112 |pmc=4611652 |bibcode=2015PNAS..11212592C |pmid=26417094|doi-access=free }}</ref>
-
-Bats were formerly grouped in the superorder [[Archonta]], along with the [[treeshrew]]s (Scandentia), [[colugo]]s (Dermoptera), and [[primate]]s.<ref name="Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa">{{cite journal |last1=Van de Bussche |first1=R. A. |last2=Hoofer |first2=S. R. |title=Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa |journal=Journal of Mammalogy |year=2004 |volume=85 |issue=2 |pages=321–330 |doi=10.1644/1545-1542(2004)085<0321:Prarcf>2.0.Co;2|doi-access=free }}</ref> Modern genetic evidence now places bats in the superorder [[Laurasiatheria]], with its [[sister taxon]] as [[Ferungulata]], which includes [[carnivora]]ns, [[pangolin]]s, [[odd-toed ungulate]]s, [[even-toed ungulate]]s, and [[cetacea]]ns.<ref name="Bat Schematics">{{cite web |url=http://www.ucmp.berkeley.edu/mammal/eutheria/chirosy.html |title=Chiroptera: Systematics |first=D. |last=Smith |publisher=University of California Museum of Paleontology |access-date=9 September 2017}}</ref><ref name="classification">{{cite journal |quote=Several molecular studies have shown that Chiroptera belong to the Laurasiatheria (represented by carnivores, pangolins, cetartiodactyls, eulipotyphlans, and perissodactyls) and are only distantly related to dermopterans, scandentians, and primates. (Nikaido et al. 2000; Lin and Penny 2001; Madsen et al. 2001; Murphy et al. 2001''a'', 2001''b''; Van Den Bussche and Hoofer 2004) |title=A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera) |doi=10.1093/molbev/msi180 |year=2005 |author=Eick, G. N. |journal=Molecular Biology and Evolution |volume=22 |pmid=15930153 |last2=Jacobs |first2=D. S. |last3=Matthee |first3=C. A. |issue=9 |pages=1869–1886|doi-access=free }}</ref><ref name=Pumo1998>{{cite journal |author=Pumo, D. E. |year=1998 |title=Complete Mitochondrial Genome of a Neotropical Fruit Bat, ''Artibeus jamaicensis'', and a New Hypothesis of the Relationships of Bats to Other Eutherian Mammals |journal=Journal of Molecular Evolution |volume=47 |issue=6 |pages=709–717 |doi=10.1007/PL00006430 |pmid=9847413|display-authors=etal |bibcode=1998JMolE..47..709P |s2cid=22900642 }}</ref><ref name=Zhou2011>{{cite journal |author=Zhou, X. |year=2011 |title=Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals |journal=Systematic Biology |volume=61 |issue=1 |pages=150–164 |doi=10.1093/sysbio/syr089 |pmid=21900649 |pmc=3243735 |display-authors=etal}}</ref><ref name="Tsagkogeorga"/> One study places Chiroptera as a sister taxon to odd-toed ungulates (Perissodactyla).<ref>{{cite journal |last=Zhang |first=G. |author2=Cowled, C. |author3=Shi, Z. |author4=Huang, Z. |author5=Bishop-Lilly, K. A. |author6=Fang, X. |author7=Wynne, J. W. |author8=Xiong, Z. |author9=Baker, M. L. |author10=Zhao, W. |author11=Tachedjian, M. |author12=Zhu, Y. |author13=Zhou, P. |author14=Jiang, X. |author15=Ng, J. |author16=Yang, L. |author17=Wu, L. |author18=Xiao, J. |author19=Feng, Y. |author20=Chen, Y. |author21=Sun, X. |author22=Zhang, Y. |author23=Marsh, G. A. |author24=Crameri, G. |author25=Broder, C. C. |author26=Frey, K. G. |author27=Wang, L.-F. |author28=Wang, J. |s2cid=31192292 |title=Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity |journal=Science |year=2012 |volume=339 |issue=6118 |pages=456–460 |doi=10.1126/science.1230835 |bibcode=2013Sci...339..456Z |pmid=23258410|pmc=8782153 }}</ref>
-
-{{cladogram|align=left|style=width:800px;font-size:85%;line-height:75%|caption=[[Phylogenetic tree]] showing Chiroptera within [[Laurasiatheria]], with [[Fereuungulata]] as its [[sister taxon]] according to a 2013 study<ref name="Tsagkogeorga"/>
-|cladogram={{clade
-|label1=[[Boreoeutheria]]
-|1={{clade
- |1=[[Euarchontoglires]] (primates, treeshrews, rodents, rabbits) [[File:Cynocephalus doguera - 1700-1880 - Print - Iconographia Zoologica - Special Collections University of Amsterdam - (white background).tiff|50px]]
-|label2=[[Laurasiatheria]]
- |2={{clade
- |1= [[Eulipotyphla]] (hedgehogs, shrews, moles, solenodons)[[File:Mole white background.jpg|60px| ]]
- |label2=[[Scrotifera]]
- |2={{clade
- |1= '''Chiroptera''' (bats) [[File:Flying fox at botanical gardens in Sydney (cropped and flipped).jpg|80px| ]]
- |label2=[[Fereuungulata]]
- |2={{clade
- |label1=[[Ferae]]
- |1={{clade
- |1= [[Pangolin|Pholidota]] (pangolins) [[File:FMIB 46859 Pangolin a grosse queue white background.jpeg|70px| ]]
- |2= [[Carnivora]] (cats, hyenas, dogs, bears, seals, weasels) [[File:Hyaena striata - 1818-1842 - Print - Iconographia Zoologica - Special Collections University of Amsterdam -(white background).jpg|60 px]] [[File:Zalophus californianus J. Smit (white background).jpg|60 px]]
- }}
- |label2=[[Euungulata]]
- |2={{clade
- |1= [[Odd-toed ungulate|Perissodactyla]] (horses, tapirs, rhinos) [[File:Equus quagga (white background).jpg|60px| ]]
- |2= [[Cetartiodactyla]] (camels, ruminants, whales) [[File:Walia ibex illustration white background.png|60 px]] [[File:Megaptera novaeangliae NOAA.jpg|100 px]]
- }}
- }}
- }}
- }}
-}}
-}}
-}}
-{{Clear}}
-The [[flying primate hypothesis]] proposed that when adaptations to flight are removed, megabats are allied to [[primate]]s by anatomical features not shared with microbats and thus flight evolved twice in mammals.<ref name="Bailey1992">{{cite journal|last1=Bailey|first1=W. J.|last2=Slightom|first2=J. L.|last3=Goodman|first3=M.|year=1992|title=Rejection of the "Flying Primate" Hypothesis by Phylogenetic Evidence from the ε-globin Gene|journal=Science|volume=256|issue=5053|pages=86–89|doi=10.1126/science.1301735|pmid=1301735|bibcode=1992Sci...256...86B}}</ref> Genetic studies have strongly supported the [[monophyly]] of bats and the single origin of mammal flight.<ref name=simmons2008/><ref name="Bailey1992"/>
-
-==== Coevolutionary evidence ====
-
-An independent molecular analysis trying to establish the dates when bat ectoparasites ([[Cimicidae|bedbugs]]) evolved came to the conclusion that bedbugs similar to those known today (all major extant lineages, all of which feed primarily on bats) had already diversified and become established over 100 mya (i.e., long before the oldest records for bats, 52 mya), suggesting that they initially all evolved on non-bat hosts and "bats were colonized several times independently, unless the evolutionary origin of bats has been grossly underestimated."<ref>{{Cite journal|last1=Roth|first1=Steffen|last2=Balvín|first2=Ondřej|last3=Siva-Jothy|first3=Michael T.|last4=Iorio|first4=Osvaldo Di|last5=Benda|first5=Petr|last6=Calva|first6=Omar|last7=Faundez|first7=Eduardo I.|last8=Khan|first8=Faisal Ali Anwarali|last9=McFadzen|first9=Mary|last10=Lehnert|first10=Margie P.|last11=Naylor|first11=Richard|date=2019-06-03|title=Bedbugs Evolved before Their Bat Hosts and Did Not Co-speciate with Ancient Humans|journal=Current Biology|language=English|volume=29|issue=11|pages=1847–1853.e4|doi=10.1016/j.cub.2019.04.048|issn=0960-9822|pmid=31104934|s2cid=155105169 |doi-access=free}}</ref> [[Flea]]s, as a group, are quite old (most flea families formed around the end of the Cretaceous<ref>{{cite journal |last1=Zhu |first1=Qiyun |last2=Hastriter |first2=Michael |last3=Whiting |first3=Michael |last4=Dittmar |first4=Katherina |title=Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria |journal=Molecular Phylogenetics and Evolution |date=September 2015 |volume=90 |pages=129–139 |biorxiv=10.1101/014308 |doi=10.1016/j.ympev.2015.04.027 |pmid=25987528|s2cid=13433327 }}</ref>), but no analyses have provided estimates for the age of the flea lineages associated with bats. The oldest known members of a different lineage of bat ectoparasites ([[Streblidae|bat flies]]), however, are from roughly 20 mya, well after the origin of bats.<ref name="Poinar&Brown2012">{{cite journal |last1=Poinar |first1=G. O. Jr. |last2=Brown |first2=A. |year=2012 |title=The first fossil streblid bat fly, ''Enischnomyia stegosoma'' n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae) |journal=Systematic Parasitology |volume=81 |issue=2 |pages=79–86 |doi=10.1007/s11230-011-9339-2 |pmid=22183917 |s2cid=14469619 |url=https://www.researchgate.net/publication/51902205}}</ref> The bat-ectoparasitic [[earwig]] family [[Arixeniidae]] has no fossil record, but is not believed to originate more than 23 mya.<ref name="EvolutionoftheInsects">{{cite book|last=Grimaldi|first=David|author2=Michael Engel|title=Evolution of the Insects|publisher=Cambridge University Press|location=Cambridge University|date=May 2005|edition=1|series=Cambridge Evolution Ser.|pages=217–222|chapter=7|isbn=978-0-521-82149-0|chapter-url=https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig%20related&pg=PA217|access-date=16 November 2009|archive-date=9 June 2021|archive-url=https://web.archive.org/web/20210609004340/https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig+related&pg=PA217|url-status=live}}</ref>
-
-===Inner systematic===
-{{cladogram|align=left|style=width:700px;font-size:85%;line-height:75%|caption=Internal relationships of the Chiroptera, divided into the traditional megabat and microbat clades, according to a 2011 study<ref name=agnarsson>{{cite journal |first1=I. |last1=Agnarsson |first2=C. M. |last2=Zambrana-Torrelio |first3=N. P. |last3=Flores-Saldana |first4=L. J. |last4=May-Collado |year=2011 |title=A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) |journal=PLOS Currents |volume=3 |pages=RRN1212 |doi=10.1371/currents.RRN1212 |doi-broken-date=31 January 2024 |pmid=21327164 |pmc=3038382 |doi-access=free }}</ref>
-|cladogram={{clade
-|label1='''Chiroptera'''
-|1={{clade
- |1={{clade
- |label1=[[Megabat|Megachiroptera]]
- |1=[[Megabat|Pteropodidae]] (megabats) [[File:Mariana Fruit Bat.jpg|40px]]
- }}
- |2={{clade
- |label1=[[Microbat|Microchiroptera]]
- |1={{clade
- |1={{clade
- |label1=[[Mouse-tailed bat|Rhinolophoidea]]
- |1={{clade
- |1=[[Megadermatidae]] (false vampire bats) [[File:Megaderma spasma.jpg|60px]]
- |2={{clade
- |1={{clade
- |1=[[Kitti's hog-nosed bat|Craseonycteridae]] (Kitti's hog-nosed bat) [[File:Craseonycteris thonglongyai.png|60px]]
- |2=[[Mouse-tailed bat|Rhinopomatidae]] (mouse-tailed bats) [[File:Rhinopoma microphyllum.jpg|60px]]
- }}
- |3={{clade
- |1=[[Hipposideridae]] (Old World leaf-nosed bats) [[File:Commerson's leaf-nosed bats hipposideros commersoni.jpg|60px]]
- |2=[[Horseshoe bat|Rhinolophidae]] (horseshoe bats) [[File:Rhinolophus rouxii.jpg|40px]]
- }}
- }}
- }}
- }}
- |2={{clade
- |label1=[[Yangochiroptera]]
- |1={{clade
- |1={{clade
- |1={{clade
- |1={{clade
- |1=[[Miniopterus|Miniopteridae]] (long winged bat) [[File:Miniopterus schreibersii dasythrix.jpg|60px]]
- }}
- |2={{clade
- |1={{clade
- |1={{clade
- |1=[[Bulldog bat|Noctilionidae]] (fisherman bats) [[File:Captive Noctilio leporinus.jpg|40px]]
- |2=[[Mormoopidae]] (''[[Pteronotus]]'') [[File:Pteronotus parnellii.jpg|60px]]
- }}
- |2={{clade
- |1={{clade
- |1={{clade
- |1=[[Mystacinidae]] (New Zealand short-tailed bats) [[File:MystacinaTuberculataFord.jpg|70px]]
- |2=[[Thyroptera|Thyropteridae]] (disc-winged bats)
- }}
- |2={{clade
- |1=[[Furipteridae]] [[File:Furipterus horrens.jpg|50px]]
- |2=[[Mormoopidae]] (''[[Mormoops]]'') [[File:Mormoops megalophylla.JPG|50px]]
- }}
- }}
- |3<!--should be 2?-->=[[Leaf-nosed bat|Phyllostomidae]] (New World leaf-nosed bats) [[File:Desmodus rotundus A Catenazzi.jpg|50px]]
- }}
- }}
- }}
- |3={{clade
- |1={{clade
- |1=[[Free-tailed bat|Molossidae]] (free-tailed bats) [[File:Mormopterus beccarii astrolabiensis 1.jpg|50px]]
- |2=[[Emballonuridae]] (sac-winged bats) [[File:Emballonura semicaudata, Ovalau Island - Joanne Malotaux (22057146275).jpg|50px]]
- }}
- |2={{clade
- |1={{clade
- |1=[[Myzopoda|Myzopodidae]] (sucker-footed bats)
- |2=[[Emballonuridae]] (''[[Taphozous]]'') [[File:Mauritian Tomb Bat.jpg|50px]]
- }}
- |2={{clade
- |1=[[Natalidae]] (funnel-eared bats) [[File:Chilonatalus micropus.png|50px]]
- |2=[[Vespertilionidae]] (vesper bats) [[File:Barbastella barbastellus 01-cropped.jpg|50px]]
- }}
- }}
- }}
- }}
- }}
- }}
- }}
- }}
- }}
- }}
- }}
-}}
-
-{{Clear}}
-
-[[Genetics|Genetic]] evidence indicates that megabats originated during the early [[Eocene]], and belong within the four major lines of microbats.<ref name=Tsagkogeorga /> Two new suborders have been proposed; [[Yinpterochiroptera]] includes the [[Megabat|Pteropodidae]], or megabat family, as well as the families [[Horseshoe bat|Rhinolophidae]], [[Hipposideridae]], [[Craseonycteridae]], [[Megadermatidae]], and [[Rhinopomatidae]].<ref name="Teeling-etal-2005">{{cite journal |last=Teeling |first=E.C. |author2=Springer, M. S. |author3=Madsen, O. |author4=Bates, P. |author5=O'Brien, S. J. |author6=Murphy, W. J. |year=2005 |author-link=Emma Teeling |title=A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record |journal=Science |volume=307 |issue=5709 |pages=580–584 |bibcode=2005Sci...307..580T |doi=10.1126/science.1105113 |pmid=15681385|s2cid=25912333 }}</ref> [[Yangochiroptera]] includes the other families of bats (all of which use laryngeal echolocation), a conclusion supported by a 2005 DNA study.<ref name="Teeling-etal-2005" /> A 2013 phylogenomic study supported the two new proposed suborders.<ref name="Tsagkogeorga">{{cite journal |doi=10.1016/j.cub.2013.09.014 |last1=Tsagkogeorga |first1=G. |last2=Parker |first2=J. |last3=Stupka |first3=E. |last4=Cotton |first4=J. A. |last5=Rossiter |first5=S. J. |year=2013 |title=Phylogenomic analyses elucidate the evolutionary relationships of bats (Chiroptera) |journal=Current Biology |volume=23 |pages=2262–2267 |issue=22 |pmid=24184098|doi-access=free }}</ref>
-
-{{cladogram|align=left|style=width:700px;font-size:85%;line-height:75%|caption=Internal relationships of the Chiroptera, with the megabats subsumed within Yinpterochiroptera, according to a 2013 study<ref name="Tsagkogeorga"/>
-|cladogram={{clade
-|label1='''Chiroptera'''
-|1={{clade
- |1={{clade
- |1=[[Yangochiroptera]] (as above) [[File:Pteronotus parnellii.jpg|60px]]
- |2={{clade
- |label1=[[Yinpterochiroptera]]
- |1={{clade
- |1=[[Megabat|Pteropodidae]] (megabats) [[File:Mariana Fruit Bat.jpg|40px]]
- |2={{clade
- |label1=[[Rhinolophoidea]]
- |1={{clade
- |1=[[Megadermatidae]] (false vampire bats) [[File:Megaderma spasma.jpg|60px]]
- |2= horseshoe bats and allies [[File:Rhinolophus rouxii.jpg|40px]]
- }}
- }}
- }}
- }}
- }}
- }}
-}}
-}}{{Clear}}
-<!--flight-->
-[[File:Golden crowned fruit bat.jpg|thumb|upright=0.6|[[Giant golden-crowned flying fox]], ''Acerodon jubatus'']]
-The 2003 discovery of an early fossil bat from the 52-million-year-old [[Green River Formation]], ''[[Onychonycteris|Onychonycteris finneyi]]'', indicates that flight evolved before echolocative abilities.<ref>{{cite journal |last1=Simmons |first1=N. B. |first2=K. L. |last2=Seymour |first3=J. |last3=Habersetzer |first4=G. F. |last4=Gunnell |year=2008 |title=Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation |journal=Nature |volume=451 |issue=7180 |pages=818–816 |doi=10.1038/nature06549 |pmid=18270539|bibcode=2008Natur.451..818S |hdl=2027.42/62816 |s2cid=4356708 |hdl-access=free }}</ref><ref>{{cite news |url=http://news.bbc.co.uk/2/hi/science/nature/7243502.stm |title=Bat fossil solves evolution poser |date=13 February 2008 |work=BBC News|access-date=17 December 2017}}</ref> ''Onychonycteris'' had claws on all five of its fingers, whereas modern bats have at most two claws on two digits of each hand. It also had longer hind legs and shorter forearms, similar to climbing mammals that hang under branches, such as [[sloth]]s and [[gibbon]]s. This palm-sized bat had short, broad wings, suggesting that it could not fly as fast or as far as later bat species. Instead of flapping its wings continuously while flying, ''Onychonycteris'' probably alternated between flaps and glides in the air.<ref name=simmons2008>{{cite journal |journal=Nature |doi=10.1038/nature06549 |title=Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation |first1=N. B. |last1=Simmons |first2=K. L. |last2=Seymour |first3=J. |last3=Habersetzer |first4=G. F. |last4=Gunnell |volume=451 |year=2008 |pmid=18270539 |issue=7180 |bibcode=2008Natur.451..818S |pages=818–821|hdl=2027.42/62816 |s2cid=4356708 |hdl-access=free }}</ref> This suggests that this bat did not fly as much as modern bats, but flew from tree to tree and spent most of its time climbing or hanging on branches.<ref name=norberg>{{cite book |url={{google books|plainurl=yes |id=xf2QW_TS6asC |page=206}}|first=U. M. |last=Norberg |editor1-first=P. C. |editor1-last=Wainwright |editor2-first=S. M. |editor2-last=Reilly |year=1994 |title=Ecological Morphology: Integrative Organismal Biology |publisher=University of Chicago Press |pages=206–208 |isbn=978-0-226-86995-7}}</ref> The distinctive features of the ''Onychonycteris'' fossil also support the hypothesis that mammalian flight most likely evolved in arboreal locomotors, rather than terrestrial runners. This model of flight development, commonly known as the "trees-down" theory, holds that bats first flew by taking advantage of height and gravity to drop down on to prey, rather than running fast enough for a ground-level take off.<ref>{{cite journal |last=Bishop |first=K. L. |year=2008 |title=The Evolution of Flight in Bats: Narrowing the Field of Plausible Hypotheses |journal=The Quarterly Review of Biology |volume=83 |issue=2 |pages=153–169 |doi=10.1086/587825 |pmid=18605533|s2cid=21638734 }}</ref><ref name="Kaplan2011">{{cite journal |last1=Kaplan |first1=Matt |title=Ancient bats got in a flap over food |journal=Nature|year=2011 |doi=10.1038/nature.2011.9304|s2cid=84015350 }}</ref>
-
-<!--echoes-->
-The molecular phylogeny was controversial, as it pointed to microbats [[paraphyly|not having a unique common ancestry]], which implied that some seemingly unlikely transformations occurred. The first is that laryngeal echolocation evolved twice in bats, once in Yangochiroptera and once in the rhinolophoids.<ref>{{cite journal |author=Teeling |year=2000 |title=Molecular evidence regarding the origin of echolocation and flight in bats |journal=Nature |volume=403 |issue=6766 |pages=188–192 |bibcode=2000Natur.403..188T |doi=10.1038/35003188 |last2=Teeling |first2=E. C. |last3=Scally |first3=M. |last4=Kao |first4=D. J. |last5=Romagnoli |first5=M. L. |last6=Springer |first6=M. S. |author-link2=Emma Teeling |pmid=10646602|s2cid=205004782 }}</ref> The second is that laryngeal echolocation had a single origin in Chiroptera, was subsequently lost in the family Pteropodidae (all megabats), and later evolved as a system of tongue-clicking in the genus ''Rousettus''.<ref>{{cite journal |year=2001 |title=Integrated fossil and molecular data reconstruct bat echolocation |journal=Proceedings of the National Academy of Sciences |volume=98 |issue=11 |pages=6241–6246 |bibcode=2001PNAS...98.6241S |doi=10.1073/pnas.111551998 |pmid=11353869 |pmc=33452|last1=Springer|first1=M. S.|last2=Teeling |first2=E. C. |last3=Madsen |first3=O. |last4=Stanhope |first4=M. J. |last5=De Jong |first5=W. W.|author-link2=Emma Teeling|doi-access=free }}</ref> Analyses of the sequence of the vocalization gene ''FoxP2'' were inconclusive on whether laryngeal echolocation was lost in the pteropodids or gained in the echolocating lineages.<ref>{{cite journal |last1=L. |first1=G. |last2=Wang |first2=J. |last3=Rossiter |first3=S. J. |last4=Jones |first4=G. |last5=Zhang |first5=S. |year=2007 |title=Accelerated FoxP2 evolution in echolocating bats |journal=PLOS ONE|volume=2 |issue=19 |pages=e900|doi=10.1371/journal.pone.0000900 |pmc=1976393 |bibcode=2007PLoSO...2..900L |pmid=17878935|doi-access=free }}</ref> Echolocation probably first derived in bats from communicative calls. The Eocene bats ''[[Icaronycteris]]'' (52 million years ago) and ''[[Palaeochiropteryx]]'' had cranial adaptations suggesting an ability to detect [[ultrasound]]. This may have been used at first mainly to forage on the ground for insects and map out their surroundings in their gliding phase, or for communicative purposes. After the adaptation of flight was established, it may have been refined to target flying prey by echolocation.<ref name=norberg/> Analyses of the hearing gene ''Prestin'' seem to favour the idea that echolocation developed independently at least twice, rather than being lost secondarily in the pteropodids,<ref>{{cite journal|last1=Li |first1=G.|last2=Wang |first2=J. |last3=Rossiter |first3=S. J.|last4=Jones |first4=G. |last5=Cotton |first5=J. A. |last6=Zhang |first6=S. |year=2008 |title=The hearing gene Prestin reunites the echolocating bats |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=105 |issue=37 |pages=13959–13964 |doi=10.1073/pnas.0802097105 |pmc=2544561 |bibcode=2008PNAS..10513959L |pmid=18776049|doi-access=free}}</ref> but [[ontogeny|ontogenic]] analysis of the cochlea supports that laryngeal echolocation evolved only once.<ref>{{cite journal|doi=10.1038/s41559-016-0021|pmid=28812602|title=Prenatal development supports a single origin of laryngeal echolocation in bats|journal=Nature Ecology & Evolution|volume=1|issue=2|pages=21|year=2017|last1=Wang|first1=Zhe|last2=Zhu|first2=Tengteng|last3=Xue|first3=Huiling|last4=Fang|first4=Na|last5=Zhang|first5=Junpeng|last6=Zhang|first6=Libiao|last7=Pang|first7=Jian|last8=Teeling|first8=Emma C.|last9=Zhang|first9=Shuyi|bibcode=2017NatEE...1...21W |s2cid=29068452|author-link=Emma Teeling}}</ref>
-
-===Classification===
-
-{{See also|List of bats|List of fruit bats}}
-
-Bats are [[placental mammal]]s. After [[rodent]]s, they are the largest [[order (biology)|order]], making up about 20% of mammal species.<ref name="LeiDong2016">{{cite journal |last1=Lei |first1=M. |last2=Dong |first2=D. |title=Phylogenomic analyses of bat subordinal relationships based on transcriptome data |journal=Scientific Reports |year=2016 |volume=6 |page=27726 |doi=10.1038/srep27726 |pmid=27291671 |pmc=4904216 |bibcode=2016NatSR...627726L }}</ref> In 1758, [[Carl Linnaeus]] classified the seven bat species he knew of in the genus ''[[Vespertilio]]'' in the order [[Primates]]. Around twenty years later, the German naturalist [[Johann Friedrich Blumenbach]] gave them their own order, Chiroptera.<ref>{{cite book |chapter-url={{google books|plainurl=yes|id=gI-Sly7oq7QC|page=288}}|chapter=Phylogeny and systematics |title=The Biology of Bats |last=Neuweiler |first=Gerhard |year=2000 |publisher=Oxford University Press |isbn=978-0195099508 |pages=287–299}}</ref> Since then, the number of described species has risen to over 1,400,<ref>{{cite web| url=https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ| website=ASM Mammal Diversity Database| date=8 June 2020| title=<nowiki>Search=Chiroptera</nowiki>| access-date=8 June 2020| archive-date=26 May 2017| archive-url=https://web.archive.org/web/20170526143337/https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ| url-status=dead}}</ref> traditionally classified as two suborders: [[Megabat|Megachiroptera]] (megabats), and [[Microbat|Microchiroptera]] (microbats/echolocating bats).<ref name=prothero>{{cite book |first=D. R. |last=Prothero |year=2017 |chapter-url={{Google books|plainurl=yes|id=eiftDAAAQBAJ|page=113}} |title=The Princeton Field Guide to Prehistoric Mammals |chapter=Laurasiatheria: Chiroptera |publisher=Princeton University Press |pages=112–116 |isbn=978-0-691-15682-8}}</ref> Not all megabats are larger than microbats.<ref>{{cite journal |first1=J. M. |last1=Hutcheon |first2=T. |last2=Garland |year=2004 |title=Are Megabats Big? |journal=Journal of Mammalian Evolution |volume=11 |issue=3/4 |pages=257 |doi=10.1023/B:JOMM.0000047340.25620.89 |s2cid=11528722 |url=https://www.researchgate.net/publication/226036305}}</ref> Several characteristics distinguish the two groups. Microbats use [[Animal echolocation|echolocation]] for navigation and finding prey, but megabats apart from those in the genus ''[[Rousettus]]'' do not.<ref name="Holland 2004">{{cite journal |title=Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810 |author=Holland, R. A. |journal=Journal of Experimental Biology |year=2004 |volume=207 |pages=4361–4369 |doi=10.1242/jeb.01288 |issue=25 |pmid=15557022|doi-access= |s2cid=2715542 }}</ref> Accordingly, megabats have a well-developed eyesight.<ref name=prothero/> Megabats have a claw on the second finger of the forelimb.<ref>{{cite journal |title=Natural selection of mammalian brain components |author=Brown, W. M. |journal=Trends in Ecology and Evolution |year=2001 |volume=16 |issue=9 |pages=471–473 |doi=10.1016/S0169-5347(01)02246-7}}</ref><ref name="Olney 1994"/> The external ears of microbats do not close to form a ring; the edges are separated from each other at the base of the ear.<ref name="Olney 1994">{{cite book |title=Creative Conservation: Interactive Management of Wild and Captive Animals |url=https://archive.org/details/creativeconserva00magi |url-access=limited |publisher=Springer |author=Stephen, J. |author2=Olney, P. |year=1994 |page=[https://archive.org/details/creativeconserva00magi/page/n378 352] |isbn=978-0412495700}}</ref> Megabats [[frugivory|eat fruit]], [[nectarivore|nectar]], or pollen, while most microbats [[insectivory|eat insects]]; others feed on fruit, nectar, pollen, [[piscivore|fish]], frogs, small mammals, or [[hematophagy|blood]].<ref name=prothero/>
-[[File:Haeckel Chiroptera.jpg|thumb|upright|"Chiroptera" from [[Ernst Haeckel]]'s ''[[Kunstformen der Natur]]'', 1904]]
-
-Below is a table chart following the bat classification of families recognized by various authors of the ninth volume of ''Handbook of the Mammals of the World'' published in 2019:<ref name="HMW2019">{{cite book | year = 2019 | editor1-last = Wilson | editor1-first = D.E.| editor2-last = Mittermeier | editor2-first = R.A. | title = Handbook of the Mammals of the World – Volume 9 | publisher = Lynx Ediciones |location=Barcelona | pages = 1–1008 |isbn =978-84-16728-19-0}}</ref>
-{| class="wikitable"
-|colspan="100%" align="center" bgcolor="#c2c2a9"|'''[[Chiroptera]] <small>Blumenbach, 1779</small>'''
-|-
-|colspan="100%" align="center" bgcolor="#d9d9c1"|'''[[Yinpterochiroptera]] <small>Springer, Teeling, Madsen, Stanhope & Jong, 2001</small>'''
-|-
-|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Pteropodidae|Pteropodoidea]] <small>J. E. Gray, 1821</small>'''
-|-
-! Family !! English Name !! Number of Species !! Image Figure
-|-
-|[[Pteropodidae]] <small>J. E. Gray, 1821</small>
-|Old World fruit bats
-|191
-|[[File:Pteropus niger three.jpeg|100px]]
-|-
-|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Rhinolophoidea]] <small>J. E. Gray, 1825</small>'''
-|-
-! Family !! English Name !! Number of Species !! Image Figure
-|-
-|[[Rhinopomatidae]] <small>Bonaparte, 1838</small>
-|Mouse-tailed bats
-|6
-|[[File:Mouse-Tailed Bat.jpg|100px]]
-|-
-|[[Craseonycteridae]] <small>Hill, 1974</small>
-|Hog-nosed bat
-|1
-|[[File:Craseonycteris thonglongyai.png|100px]]
-|-
-|[[Megadermatidae]] <small>H. Allen, 1864</small>
-|False-vampires
-|6
-|[[File:Greater False Vampire Bat (Megaderma lyra).jpg|100px]]
-|-
-|[[Rhinonycteridae]] <small>J. E. Gray, 1866</small>
-|Trident bats
-|9
-|[[File:Rhinonicteris aurantia.jpg|100px]]
-|-
-|[[Hipposideridae]] <small>Lydekker, 1891</small>
-|Old World leaf-nosed bats
-|88
-|[[File:Bat in a Cave.jpg|100px]]
-|-
-|[[Rhinolophidae]] <small>J. E. Gray, 1825</small>
-|Horseshoe bats
-|109
-|[[File:Bat(20070605).jpg|100px]]
-|-
-|colspan="100%" align="center" bgcolor="#d9d9c1"|'''[[Yangochiroptera]] <small>Koopman, 1984</small>'''
-|-
-|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Emballonuroidea]] <small>Gervais in de Castelnau, 1855</small>'''
-|-
-! Family !! English Name !! Number of Species !! Image Figure
-|-
-|[[Nycteridae]] <small>Van der Hoeven, 1855</small>
-|Slit-faced bats
-|15
-|[[File:Common Slit-faced Bat (Nycteris thebaica) (7027172215).jpg|100px]]
-|-
-|[[Emballonuridae]] <small>Gervais in de Castelnau, 1855</small>
-|Sheath-tailed bats
-|54
-|[[File:Emballonura semicaudata.jpg|100px]]
-|-
-|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Noctilionoidea]] <small>J. E. Gray, 1821</small>'''
-|-
-! Family !! English Name !! Number of Species !! Image Figure
-|-
-|[[Myzopodidae]] <small>Thomas, 1904</small>
-|Madagascar sucker-footed bats
-|2
-|[[File:Myzopoda Myzopodidae.jpg|100px]]
-|-
-|[[Mystacinidae]] <small>Dobson, 1875</small>
-|New Zealand short-tailed bats
-|2
-|[[File:Southern short-tailed bats, Mystacina tuberculata.jpg|100px]]
-|-
-|[[Thyropteridae]] <small>Miller, 1907</small>
-|Disk-winged bats
-|5
-|[[File:Thyroptera discifera.jpg|100px]]
-|-
-|[[Furipteridae]] <small>J. E. Gray, 1866</small>
-|Smoky bat and thumbless bat
-|2
-|[[File:Furipterus horrens.jpg|100px]]
-|-
-|[[Noctilionidae]] <small>J. E. Gray, 1821</small>
-|Bulldog bats
-|2
-|[[File:Captive Noctilio leporinus.jpg|100px]]
-|-
-|[[Mormoopidae]] <small>Saussure, 1860</small>
-|Ghost-faced, naked-backed and mustached bats
-|18
-|[[File:Mormoops megalophylla.JPG|100px]]
-|-
-|[[Phyllostomidae]] <small>J. E. Gray, 1825</small>
-|New World leaf-nosed bats
-|217
-|[[File:Phyllostomus discolor b.jpg|100px]]
-|-
-|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Vespertilionoidea]] <small>J. E. Gray, 1821</small>'''
-|-
-! Family !! English Name !! Number of Species !! Image Figure
-|-
-|[[Natalidae]] <small>J. E. Gray, 1825</small>
-|Funnel-eared bats
-|10
-|[[File:Natalus stramineus.jpg|100px]]
-|-
-|[[Molossidae]] <small>Gervais in de Castelnau, 1855</small>
-|Free-tailed bats
-|126
-|[[File:Mormopterus beccarii astrolabiensis 1.jpg|100px]]
-|-
-|[[Miniopteridae]] <small>Dobson, 1875</small>
-|Long-fingered bats
-|38
-|[[File:Southern bentwing bat.jpg|100px]]
-|-
-|[[Cistugidae]] <small>Lack et al., 2010</small>
-|Wing-gland bats
-|2
-|
-|-
-|[[Vespertilionidae]] <small>J. E. Gray, 1821</small>
-|Vesper bats
-|496
-|[[File:Vespertilio murinus 2.jpg|100px]]
-|-
-|}
-
-==Anatomy and physiology==
-===Skull and dentition===
-
-[[File:Horniman fruit bat skin skeleton.jpg|thumb|right|A preserved megabat showing how the skeleton fits inside its skin]]
-
-The head and teeth shape of bats can vary by species. In general, megabats have longer snouts, larger eye sockets and smaller ears, giving them a more dog-like appearance, which is the source of their nickname of "flying foxes".<ref>{{cite book|author=Fleming, T.|year=2003|title=A Bat Man in the Tropics: Chasing El Duende|url=https://archive.org/details/batmantropicscha00flem|url-access=limited|publisher=University of California Press|page=[https://archive.org/details/batmantropicscha00flem/page/n189 165]|isbn=978-0520236066}}</ref> Among microbats, longer snouts are associated with nectar-feeding.<ref name="MacDonald"/> while vampire bats have reduced snouts to accommodate large incisors and canines.<ref name=Greenhall1983>{{cite journal|author1=Greenhall, A.M. |author2=Joermann, G. |author3=Schmidt, U. |year=1983|title= Desmodus rotundus|journal= Mammalian Species|issue=202 |pages=1–6|doi=10.2307/3503895|jstor=3503895 |doi-access=free}}</ref>
-
-Small insect-eating bats can have as many as 38 teeth, while vampire bats have only 20. Bats that feed on hard-shelled insects have fewer but larger teeth with longer canines and more robust lower jaws than species that prey on softer bodied insects. In nectar-feeding bats, the canines are long while the cheek-teeth are reduced. In fruit-eating bats, the cusps of the cheek teeth are adapted for crushing.<ref name="MacDonald"/> The upper incisors of vampire bats lack [[tooth enamel|enamel]], which keeps them razor-sharp.<ref name=Greenhall1983/> The bite force of small bats is generated through [[mechanical advantage]], allowing them to bite through the [[sclerotization|hardened]] armour of insects or the [[Peel (fruit)|skin]] of fruit.<ref>{{cite journal |first1=J. |last1=Senawi |first2=D. |last2=Schmieder |first3=B. |last3=Siemers |first4=T. |last4=Kingston |year=2015 |title=Beyond size – morphological predictors of bite force in a diverse insectivorous bat assemblage from Malaysia |journal=Functional Ecology |volume=29 |issue=11 |pages=1411–1420 |doi=10.1111/1365-2435.12447|doi-access=free |bibcode=2015FuEco..29.1411S }}</ref>
-
-===Wings and flight===
-
-{{Main|Bat flight|Bat wing development}}
-
-Bats are the only mammals capable of sustained flight, as opposed to [[glide (flight)|gliding]], as in the [[flying squirrel]].<ref name=molecule>{{cite journal |last=Hunter |first=P. |year=2007 |title=The nature of flight: The molecules and mechanics of flight in animals |journal=Science and Society |volume=8 |issue=9 |pages=811–813 |pmid=17767190 |doi=10.1038/sj.embor.7401050 |pmc=1973956}}</ref> The fastest bat, the [[Mexican free-tailed bat]] (''Tadarida brasiliensis''), can achieve a [[ground speed]] of {{convert|160|km/h|mph|-1|abbr=on}}.<ref>{{cite journal |author1=McCracken, G. F. |author2=Safi, K. |author3=Kunz, T. H. |author4=Dechmann, D. K. N. |author5=Swartz, S. M. |author6=Wikelski, M.|title=Airplane tracking documents the fastest flight speeds recorded for bats |journal=Royal Society Open Science |volume=3 |issue=11 |pages=160398 |date=9 November 2016 |doi=10.1098/rsos.160398|pmid=28018618 |bibcode=2016RSOS....360398M |pmc=5180116}}</ref>
-[[File:Flapping-Tail-Membrane-in-Bats-Produces-Potentially-Important-Thrust-during-Horizontal-Takeoffs-and-pone.0032074.s004.ogv|thumb|left|Little brown bat take off and flight]]
-
-The finger bones of bats are much more flexible than those of other mammals, owing to their flattened cross-section and to low levels of [[calcium]] near their tips.<ref>{{Cite journal|last=Norberg|first=Ulla M.|date=1972|title=Bat wing structures important for aerodynamics and rigidity (Mammalia, Chiroptera)|url=https://doi.org/10.1007/BF00418147|journal=Zeitschrift für Morphologie der Tiere|language=en|volume=73|issue=1|pages=45–61|doi=10.1007/BF00418147|s2cid=38538056|issn=1432-234X}}</ref><ref>{{Cite journal|last1=Torres|first1=Diego A.|last2=Freitas|first2=Mariella B.|last3=da Matta|first3=Sérgio L. P.|last4=Novaes|first4=Rômulo D.|last5=Gonçalves|first5=Reggiani Vilela|date=2019-03-28|title=Is bone loss a physiological cost of reproduction in the Great fruit-eating bat Artibeus lituratus?|journal=PLOS ONE|volume=14|issue=3|pages=e0213781|doi=10.1371/journal.pone.0213781|issn=1932-6203|pmc=6438481|pmid=30921346|bibcode=2019PLoSO..1413781T|doi-access=free}}</ref> The elongation of bat digits, a key feature required for wing development, is due to the [[upregulation]] of [[bone morphogenetic protein]]s (Bmps). During [[embryo|embryonic development]], the gene controlling Bmp signalling, ''[[Bone morphogenetic protein 2|Bmp2]]'', is subjected to increased expression in bat forelimbs{{snd}}resulting in the extension of the manual digits. This crucial genetic alteration helps create the specialized limbs required for powered flight. The relative proportion of extant bat forelimb digits compared with those of Eocene fossil bats have no significant differences, suggesting that bat wing morphology has been conserved for over fifty million years.<ref name=Sears2006>{{cite journal |last=Sears |first=K. E. |author2=Behringer, R. R. |author3=Rasweiler, J. J. |author4=Niswander, L. A. |title=Development of bat flight: Morphologic and molecular evolution of bat wing digits |journal=Proceedings of the National Academy of Sciences |year=2006 |volume=103 |issue=17 |pages=6581–6586 |doi=10.1073/pnas.0509716103 |pmid=16618938 |pmc=1458926 |bibcode=2006PNAS..103.6581S |doi-access=free }}</ref> During flight, the bones undergo [[bending]] and [[shear stress|shearing]] [[stress (mechanics)|stress]]; the bending stresses felt are smaller than in terrestrial mammals, but the shearing stress is larger. The wing bones of bats have a slightly lower breaking stress point than those of birds.<ref>{{cite journal |last=Kirkpatrick |first=S. J. |year=1994 |title=Scale effects on the stresses and safety factors in the wing bones of birds and bats |journal=Journal of Experimental Biology |volume=190 |pages=195–215 |doi=10.1242/jeb.190.1.195 |pmid=7964391}}</ref>
-
-As in other mammals, and unlike in birds, the [[radius (anatomy)|radius]] is the main component of the forearm. Bats have five elongated digits, which all radiate around the wrist. The thumb points forward and supports the [[leading edge]] of the wing, and the other digits support the tension held in the wing membrane. The second and third digits go along the wing tip, allowing the wing to be pulled forward against aerodynamic [[drag (physics)|drag]], without having to be thick as in [[pterosaur]] wings. The fourth and fifth digits go from the wrist to the [[trailing edge]], and repel the bending force caused by air pushing up against the stiff membrane.<ref name=pennycuick/> Due to their flexible joints, bats are more maneuverable and more dexterous than gliding mammals.<ref name=marshall2015>{{cite journal |last1=Marshall |first1=K. L. |last2=Chadha |first2=M. |last3=deSouza |first3=L. A. |last4=Sterbing-D'Angelo |first4=S. J. |last5=Moss |first5=C. F. |last6=Lumpkin |first6=E. A. |year=2015 |title=Somatosensory substrates of flight control in bats |journal=Cell Reports |volume=11 |issue=6 |pages=851–858 |doi=10.1016/j.celrep.2015.04.001 |pmid=25937277 |pmc=4643944}}</ref>
-[[File:Big-eared-townsend-fledermaus.jpg|thumb|Wing membranes ([[patagium|patagia]]) of [[Townsend's big-eared bat]], ''Corynorhinus townsendii'']]
-
-The wings of bats are much thinner and consist of more bones than the wings of birds, allowing bats to maneuver more accurately than the latter, and fly with more lift and less drag.<ref>{{cite web |author=Brown University |year=2007 |url=https://www.sciencedaily.com/releases/2007/01/070118161402.htm |title=Bats in Flight Reveal Unexpected Aerodynamics |publisher=ScienceDaily |access-date=31 October 2017}}</ref> By folding the wings in toward their bodies on the upstroke, they save 35 percent energy during flight.<ref>{{cite journal|author1=Riskin, D. K. |author2=Bergou, A. |author3=Breuer, K. S. |author4=Swartz, S. M. |year=2012|title=Upstroke wing flexion and the inertial cost of bat flight|journal=Proceedings of the Royal Society B: Biological Sciences|volume=279|issue=1740|pages=2945–2950|doi=10.1098/rspb.2012.0346|pmid=22496186|pmc=3385481}}</ref> The membranes are delicate, tearing easily,<ref name=ideas>{{cite journal |last=Roberts |first=W. C. |year=2006 |title=Facts and ideas from anywhere |journal=Proceedings (Baylor University. Medical Center) |volume=19 |issue=4 |pages=425–434 |pmid=17106509 |pmc=1618737 |doi=10.1080/08998280.2006.11928217 }}</ref> but can regrow, and small tears heal quickly.<ref name=ideas/><ref>{{cite journal |last=Irwin |first=N. |year=1997 |title=Wanted DNA samples from ''Nyctimene'' or ''Paranyctimene Bats'' |journal=The New Guinea Tropical Ecology and Biodiversity Digest |volume=3 |page=10 |url=http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf|url-status=dead|archive-url=https://web.archive.org/web/20080722140449/http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf|archive-date=22 July 2008}}</ref> The surface of the wings is equipped with touch-sensitive receptors on small bumps called [[Merkel cell]]s, also found on human fingertips. These sensitive areas are different in bats, as each bump has a tiny hair in the center, making it even more sensitive and allowing the bat to detect and adapt to changing airflow; the primary use is to judge the most efficient speed at which to fly, and possibly also to avoid [[Stall (fluid mechanics)|stalls]].<ref name=sterbing>{{cite journal |first1=S. |last1=Sterbing-D'Angelo |first2=M. |last2=Chadha |first3=C. |last3=Chiu |first4=B. |last4=Falk |first5=W. |last5=Xian |first6=J. |last6=Barcelo |first7=J. M. |last7=Zook |first8=C. F. |last8=Moss |year=2011 |title=Bat wing sensors support flight control |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=108 |number=27 |pages=11291–11296 |doi=10.1073/pnas.1018740108 |pmc=3131348|bibcode=2011PNAS..10811291S |pmid=21690408|doi-access=free }}</ref> Insectivorous bats may also use tactile hairs to help perform complex maneuvers to capture prey in flight.<ref name=marshall2015/>
-
-{{anchor|Skin}}
-The [[patagium]] is the wing membrane; it is stretched between the arm and finger bones, and down the side of the body to the hind limbs and tail. This skin membrane consists of [[connective tissue]], [[elastic fibre]]s, [[nerve]]s, [[muscle]]s, and [[blood vessel]]s. The muscles keep the membrane taut during flight.<ref name=Mehlhorn2013>{{cite book |title=Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths |last=Mehlhorn |first=H. |publisher=Springer |year=2013 |isbn=978-3-642-39333-4|pages=2–27}}</ref> The extent to which the tail of a bat is attached to a patagium can vary by species, with some having completely free tails or even no tails.<ref name=MacDonald/> The skin on the body of the bat, which has one layer of [[epidermis]] and [[dermis]], as well as [[hair follicle]]s, [[sweat gland]]s and a fatty subcutaneous layer, is very different from the skin of the wing membrane. Depending on the bat species the presence of [[hair follicle]]s and [[sweat gland]]s will vary in the [[patagium]].<ref>{{Cite journal |last1=Makanya |first1=Andrew N |last2=Mortola |first2=Jacopo P |date=December 2007 |title=The structural design of the bat wing web and its possible role in gas exchange |journal=Journal of Anatomy |volume=211 |issue=6 |pages=687–697 |doi=10.1111/j.1469-7580.2007.00817.x |issn=0021-8782 |pmc=2375846 |pmid=17971117}}</ref> This [[patagium]] is an extremely thin double layer of epidermis; these layers are separated by a [[connective tissue]] center, rich with [[collagen]] and [[elastic fiber]]s. In some bat species sweats glands will be present in between this [[connective tissue]].<ref>{{Cite journal |last1=Greville |first1=Lucas J |last2=Ceballos-Vasquez |first2=Alejandra |last3=Valdizón-Rodríguez |first3=Roberto |last4=Caldwell |first4=John R |last5=Faure |first5=Paul A |date=2018-05-16 |title=Wound healing in wing membranes of the Egyptian fruit bat (Rousettus aegyptiacus) and big brown bat (Eptesicus fuscus) |journal=Journal of Mammalogy |volume=99 |issue=4 |pages=974–982 |doi=10.1093/jmammal/gyy050 |issn=0022-2372|doi-access=free }}</ref> Furthermore, if hair follicles are present this supports the bat in order to adjust sudden flight maneuvers.<ref>{{Cite journal |last1=Sterbing-D'Angelo |first1=Susanne |last2=Chadha |first2=Mohit |last3=Chiu |first3=Chen |last4=Falk |first4=Ben |last5=Xian |first5=Wei |last6=Barcelo |first6=Janna |last7=Zook |first7=John M. |last8=Moss |first8=Cynthia F. |date=2011-07-05 |title=Bat wing sensors support flight control |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=108 |issue=27 |pages=11291–11296 |doi=10.1073/pnas.1018740108 |issn=0027-8424 |pmc=3131348 |pmid=21690408|bibcode=2011PNAS..10811291S |doi-access=free }}</ref><ref>{{Cite journal |last=Turner |first=Marian |date=2011-06-20 |title=Wing hairs help to keep bats in the air |url=https://www.nature.com/articles/news.2011.376 |journal=Nature |language=en |doi=10.1038/news.2011.376 |issn=1476-4687}}</ref> For bat embryos, [[apoptosis]] (programmed cell death) affects only the hindlimbs, while the forelimbs retain webbing between the digits that forms into the wing membranes.{{sfn|Fenton|Simmons|2015|pages=166–167}} Unlike birds, whose stiff wings deliver bending and torsional stress to the shoulders, bats have a flexible wing membrane that can resist only tension. To achieve flight, a bat exerts force inwards at the points where the membrane meets the skeleton, so that an opposing force balances it on the wing edges perpendicular to the wing surface. This adaptation does not permit bats to reduce their wingspans, unlike birds, which can partly fold their wings in flight, radically reducing the wing span and area for the upstroke and for gliding. Hence bats cannot travel over long distances as birds can.<ref name="pennycuick" />
-
-Nectar- and pollen-eating bats can hover, in a similar way to [[hummingbird]]s. The sharp leading edges of the wings can create [[vortex|vortices]], which provide [[Vortex lift|lift]]. The vortex may be stabilized by the animal changing its wing curvatures.<ref>{{cite web |title=Leading Edge Vortex Allows Bats to Stay Aloft, Aerospace Professor Reports |publisher=USC Viterbi School of Engineering |date=29 February 2008 |url=https://viterbi.usc.edu/news/news/2008/leading-edge-vortex.htm}}</ref>
-
-===Roosting and gaits===
-
-[[File:Group flying dogs hanging in tree Sri Lanka.JPG|thumb|upright=1.3|Group of megabats roosting]]
-
-When not flying, bats hang upside down from their feet, a posture known as roosting.<ref name=fenton1984/> The femurs are attached at the hips in a way that allows them to bend outward and upward in flight. The ankle joint can flex to allow the trailing edge of the wings to bend downwards. This does not permit many movements other than hanging or clambering up trees.<ref name=pennycuick/> Most megabats roost with the head tucked towards the belly, whereas most microbats roost with the neck curled towards the back. This difference is reflected in the structure of the [[cervical vertebra|cervical or neck vertebra]]e in the two groups, which are clearly distinct.<ref name=fenton1984>{{cite journal |last1=Fenton |first1=M. B. |last2=Crerar |first2=L. M. |title=Cervical Vertebrae in Relation to Roosting Posture in Bats |journal=Journal of Mammalogy |year=1984 |volume=65 |issue=3 |pages=395–403 |doi=10.2307/1381085 |jstor=1381085 }}</ref> Tendons allow bats to lock their feet closed when hanging from a roost. Muscular power is needed to let go, but not to grasp a perch or when holding on.{{sfn|Fenton|Simmons|2015|page=78}}
-
-When on the ground, most bats can only crawl awkwardly. A few species such as the [[New Zealand lesser short-tailed bat]] and the [[common vampire bat]] are agile on the ground. Both species make lateral gaits (the limbs move one after the other) when moving slowly but vampire bats move with a bounding gait (all limbs move in unison) at greater speeds, the folded up wings being used to propel them forward. Vampire bat likely evolved these gaits to follow their hosts while short-tailed bats developed in the absence of terrestrial mammal competitors. Enhanced terrestrial locomotion does not appear to have reduced their ability to fly.<ref>{{cite journal |last1=Riskin |first1=D. K. |last2=Parsons |first2=S. |last3=Schutt |first3=W. A. Jr. |last4=Carter |first4=G. G. |last5=Hermanson |first5=J. W. |title=Terrestrial locomotion of the New Zealand short-tailed bat ''Mystacina tuberculata'' and the common vampire bat ''Desmodus rotundus'' |journal=Journal of Experimental Biology|year=2006|volume=209 |issue=9 |pages=1725–1736 |doi=10.1242/jeb.02186 |pmid=16621953 |s2cid=18305396 |url=http://eprints.qut.edu.au/79775/1/79775.pdf}}</ref>
-
-===Internal systems===
-
-Bats have an efficient [[circulatory system]]. They seem to make use of particularly strong venomotion, a rhythmic contraction of [[vein|venous]] wall muscles. In most mammals, the walls of the veins provide mainly passive resistance, maintaining their shape as deoxygenated blood flows through them, but in bats they appear to actively support blood flow back to the heart with this pumping action.<ref>{{cite journal |last=Jones |first=T. W. |year=1852 |title=Discovery That the Veins of the Bat's Wing (Which are Furnished with Valves) are Endowed with Rythmical {{sic}} Contractility, and That the Onward Flow of Blood is Accelerated by Each Contraction |jstor=108539 |journal=Philosophical Transactions of the Royal Society of London |volume=142 |pages=131–136 |doi=10.1098/rstl.1852.0011|s2cid=52937127 }}</ref><ref>{{Cite journal |last1=Dongaonkar |first1=R. M. |last2=Quick |first2=C. M. |last3=Vo |first3=J. C. |last4=Meisner |first4=J. K. |last5=Laine |first5=G. A. |last6=Davis |first6=M. J. |last7=Stewart |first7=R. H. |date=15 June 2012 |title=Blood flow augmentation by intrinsic venular contraction in vivo |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=302 |issue=12 |pages=R1436–R1442 |doi=10.1152/ajpregu.00635.2011 |pmc=3378342 |pmid=22513742}}</ref> Since their bodies are relatively small and lightweight, bats are not at risk of blood flow rushing to their heads when roosting.<ref>{{cite web |author=Langley, L. |date=29 August 2015|title=Bats and Sloths Don't Get Dizzy Hanging Upside Down – Here's Why |work=National Geographic |access-date=10 June 2017 |url=http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/|archive-url=https://web.archive.org/web/20150831022930/http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/|url-status=dead|archive-date=31 August 2015}}</ref>
-
-Bats possess a highly adapted [[respiratory system]] to cope with the demands of powered flight, an energetically taxing activity that requires a large continuous throughput of oxygen. In bats, the relative alveolar surface area and pulmonary capillary blood volume are larger than in most other small quadrupedal mammals.<ref>{{Cite journal |title=What it takes to fly: the structural and functional respiratory refinements in birds and bats |url=http://jeb.biologists.org/content/203/20/3045 |journal=Journal of Experimental Biology |year=2000 |pmid=11003817 |pages=3045–3064 |volume=203 |issue=20 |first=J. N. |last=Maina|doi=10.1242/jeb.203.20.3045 |doi-access=free }}</ref> During flight the respiratory cycle has a one-to-one relationship with the wing-beat cycle.<ref>{{cite journal |last1=Suthers |first1=Roderick A. |last2=Thomas |first2=Steven P |last3=Suthers |first3=Barbara A |title=Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat |journal=Journal of Experimental Biology |volume=56 |date=1972 |issue=56 |pages=37–48 |doi=10.1242/jeb.56.1.37 |url=https://jeb.biologists.org/content/56/1/37 |access-date=9 August 2019|doi-access=free }}</ref> Because of the restraints of the mammalian lungs, bats cannot maintain high-altitude flight.<ref name=pennycuick>{{cite book |chapter-url={{google books |plainurl=yes |id=KG86AgWwFEUC |page=136}} |first=C. J. |last=Pennycuick |year=2008 |title=Modelling the Flying Bird |chapter=Bats |publisher=Elsevier |isbn=978-0-12-374299-5 |pages=136–143}}</ref>
-[[File:Flying fox at botanical gardens in Sydney (cropped).jpg|thumb|upright|The wings are highly vascularized membranes, the larger blood vessels visible against the light.<ref name=benhamo/>]]
-
-It takes a lot of energy and an efficient circulatory system to work the flight muscles of bats. Energy supply to the muscles engaged in flight requires about double the amount compared to the muscles that do not use flight as a means of mammalian locomotion. In parallel to energy consumption, blood oxygen levels of flying animals are twice as much as those of their terrestrially locomoting mammals. As the blood supply controls the amount of oxygen supplied throughout the body, the [[circulatory system]] must respond accordingly. Therefore, compared to a terrestrial mammal of the same relative size, the bat's [[heart]] can be up to three times larger, and pump more blood.<ref name="Jürgens Bartels Bartels 1981 pp. 243–260">{{cite journal | last1=Jürgens | first1=Klaus Dieter | last2=Bartels | first2=Heinz | last3=Bartels | first3=Rut | title=Blood oxygen transport and organ weights of small bats and small non-flying mammals | journal=Respiration Physiology | volume=45 | issue=3 | year=1981 | doi=10.1016/0034-5687(81)90009-8 | pmid=7330485 | pages=243–260}}</ref> Cardiac output is directly derived from heart rate and [[stroke volume]] of the blood;<ref name="Martini 2015">{{cite book | last=Martini | first=Frederic | title=Visual anatomy & physiology | publisher=Pearson | year=2015 | isbn=978-0-321-91874-1 | oclc=857980151 | pages=704–705}}</ref> an active [[microbat]] can reach a heart rate of 1000 [[beats per minute]].<!--<ref name="Kunz1982">{{Cite book |title=Ecology of Bats |last=Kunz |first=Thomas |publisher=Plenum |year=1982 |isbn=978-0-306-40950-9 |pages=MISSING}}</ref>--><ref name="WANG2009">{{cite journal | last1=Wang| first1=LI| last2=Li | first2=Gang | last3=Wang| first3=Jinhong | last4=Ye | first4=Shaohui | last5=Jones | first5=Gareth | last6=Zhang | first6=Shuyi | title=Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera) | journal=Genetics Research | volume=91 | issue=2 | pages=101–109 | year=2009 | doi=10.1017/s0016672309000032 | pmid=19393126 | doi-access=free }}</ref>
-
-With its extremely thin membranous tissue, a bat's wing can significantly contribute to the organism's total gas exchange efficiency.<ref name="Makanya2007">{{Cite journal |last1=Makanya |first1=A. N. |last2=Mortola |first2=J. P. |year=2007 |title=The structural design of the bat wing web and its possible role in gas exchange |journal=Journal of Anatomy |volume=211 |issue=6 |pages=687–697 |doi=10.1111/j.1469-7580.2007.00817.x |pmc=2375846 |pmid=17971117}}</ref> Because of the high energy demand of flight, the bat's body meets those demands by exchanging gas through the patagium of the wing. When the bat has its wings spread it allows for an increase in surface area to volume ratio. The surface area of the wings is about 85% of the total body surface area, suggesting the possibility of a useful degree of gas exchange.<ref name=Makanya2007 /> The subcutaneous vessels in the membrane lie very close to the surface and allow for the diffusion of oxygen and carbon dioxide.<ref>{{Cite journal |last1=Holbrook |first1=K. A. |last2=Odland |first2=G. F. |year=1978 |title=A collagen and elastic network in the wing of the bat |journal=Journal of Anatomy |volume=126 |issue=Pt 1 |pages=21–36 |pmc=1235709 |pmid=649500}}</ref>
-
-The [[digestive system]] of bats has varying adaptations depending on the species of bat and its diet. As in other flying animals, food is processed quickly and effectively to keep up with the energy demand. Insectivorous bats may have certain [[digestive enzyme]]s to better process insects, such as [[chitinase]] to break down [[chitin]], which is a large component of insects.<ref>{{cite journal |first1=S. |last1=Strobel |first2=A. |last2=Roswag |first3=N. I. |last3=Becker |first4=T. E. |last4=Trenczek |first5=J. A. |last5=Encarnação |year=2013 |title=Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase |journal=PLOS ONE|volume=8 |issue=9 |pages=e72770 |doi=10.1371/journal.pone.0072770 |pmid=24019876 |pmc=3760910 |bibcode=2013PLoSO...872770S |doi-access=free }}</ref> Vampire bats, probably due to their diet of blood, are the only vertebrates that do not have the enzyme [[maltase]], which breaks down [[malt sugar]], in their intestinal tract. Nectivorous and frugivorous bats have more maltase and [[sucrase]] enzymes than insectivorous, to cope with the higher sugar contents of their diet.<ref name=schondube01>{{cite journal |last1=Schondube |first1=J. E. |last2=Herrera-M |first2=L. Gerardo |last3=Martínez del Rio |first3=C. |year=2001 |title=Diet and the evolution of digestion and renal function in phyllostomid bats |journal=Zoology |volume=104 |issue=1 |pages=59–73 |url=http://www.uwyo.edu/cmdelrio/site/publications_files/bats,%20isotopes,%20and%20kidneys.pdf |doi=10.1078/0944-2006-00007 |pmid=16351819}}</ref>
-
-The adaptations of the [[kidney]]s of bats vary with their diets. Carnivorous and vampire bats consume large amounts of protein and can output concentrated [[urine]]; their kidneys have a thin cortex and long [[renal papilla]]e. Frugivorous bats lack that ability and have kidneys adapted for [[electrolyte]]-retention due to their low-electrolyte diet; their kidneys accordingly have a thick cortex and very short conical papillae.<ref name="schondube01" /> Bats have higher metabolic rates associated with flying, which lead to an increased respiratory water loss. Their large wings are composed of the highly vascularized membranes, increasing the surface area, and leading to [[cutaneous]] evaporative water loss.<ref name=benhamo>{{Cite journal |last1=Ben-Hamo |first1=Miriam |last2=Muñoz-Garcia |first2=Agustí |last3=Larrain |first3=Paloma |last4=Pinshow |first4=Berry |last5=Korine |first5=Carmi |last6=Williams |first6=Joseph B. |date=2016-06-29 |title=The cutaneous lipid composition of bat wing and tail membranes: a case of convergent evolution with birds |journal=Proceedings of the Royal Society B: Biological Sciences |volume=283 |issue=1833 |pages=20160636 |doi=10.1098/rspb.2016.0636 |pmc=4936036 |pmid=27335420}}</ref> Water helps maintain their [[electrolyte imbalance|ionic balance]] in their blood, [[thermoregulation]] system, and removal of wastes and toxins from the body via urine. They are also susceptible to [[Blood urea nitrogen|blood urea]] poisoning if they do not receive enough fluid.<ref>{{Cite report |last1=Lyons |first1=Rachel |last2=Wimberley |first2=Trish |date=March 2014 |title=Introduction to the Care and Rehabilitation of Microbats |url=http://www.bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf |publisher=Wildcare Australia |version=3.0 |page=12 |access-date=5 May 2018 |archive-date=10 March 2018 |archive-url=https://web.archive.org/web/20180310034326/http://bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf |url-status=dead }}</ref>
-
-The structure of the uterine system in female bats can vary by species, with some having two [[uterine horn]]s while others have a single mainline chamber.{{sfn|Fenton|Simmons|2015|page=164}}
-
-===Senses===
-====Echolocation====
-
-{{Main|Animal echolocation#Bats}}
-{{Listen|filename=Pipistrellus.ogg|title=''Pipistrellus'' pulses|description=Time-expanded recording of ''Pipistrellus pipistrellus'' bat echolocation calls and social call}}
-{{Listen|filename=Bat feeding buzz.wav|title=Feeding buzz|description=Time-expanded recording of the feeding buzz of a bat homing in on its prey}}
-
-Microbats and a few megabats emit ultrasonic sounds to produce echoes. Sound intensity of these echos are dependent on subglottic pressure. The bats' cricothyroid muscle controls the orientation pulse frequency, which is an important function. This muscle is located inside the larynx and it is the only tensor muscle capable of aiding phonation.<ref>{{cite journal |last1=Suthers |first1=Roderick |last2=Fattu |first2=James |title=Mechanisms of Sound Production by Echolocating Bats |journal=American Zoologist |date=1973 |volume=13 |issue=4 |pages=1215–1226 |doi=10.1093/icb/13.4.1215|doi-access=free }}</ref> By comparing the outgoing pulse with the returning echoes, bats can gather information on their surroundings. This allows them to detect prey in darkness.{{sfn|Fenton|Simmons|2015|pages=82–84}} Some bat calls can reach 140 [[decibels]].<ref>{{cite journal |last1=Surlykke |first1=A. |last2=Elisabeth |first2=K. V. |year=2008 |title=Echolocating bats Cry Out Loud to Detect Their Prey |journal=PLOS ONE|volume=3 |issue=4 |page=e2036 |doi=10.1371/journal.pone.0002036 |pmc=2323577 |bibcode=2008PLoSO...3.2036S |pmid=18446226|doi-access=free }}</ref> Microbats use their [[larynx]] to emit echolocation signals through the mouth or the nose.<ref>{{cite journal|last1=Teeling|first1=E. C.|last2=Madsen|first2=O|last3=Van Den Bussche|first3=R. A.|last4=de Jong|first4=W. W.|last5=Stanhope|first5=M. J.|last6=Springer|first6=M. S.|year=2002|title=Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats|journal=PNAS|volume=99|issue=3|pages=1431–1436|doi=10.1073/pnas.022477199|pmid=11805285|pmc=122208|bibcode=2002PNAS...99.1431T|doi-access=free}}</ref> Microbat calls range in frequency from 14,000 to well over 100,000 Hz, extending well beyond the range of human hearing (between 20 and 20,000 Hz).<ref name=muller2004/> Various groups of bats have evolved fleshy extensions around and above the nostrils, known as [[nose-leaf|nose-leaves]], which play a role in sound transmission.{{sfn|Fenton|Simmons|2015|page=31}}
-[[File:Animal echolocation.svg|thumb|left|upright=1.3|Principle of bat echolocation: orange is the call and green is the echo.]]
-
-In low-duty cycle echolocation, bats can separate their calls and returning echoes by time. They have to time their short calls to finish before echoes return.<ref name="Jones2007"/> The delay of the returning echoes allows the bat to estimate the range to their prey.<ref name=muller2004/> In high-duty cycle echolocation, bats emit a continuous call and separate pulse and echo in frequency using the [[Doppler effect]] of their motion in flight. The shift of the returning echoes yields information relating to the motion and location of the bat's prey. These bats must deal with changes in the Doppler shift due to changes in their flight speed. They have adapted to change their pulse emission frequency in relation to their flight speed so echoes still return in the optimal hearing range.<ref name="Jones2007">{{cite journal |author1=Jones, G. |author2=Holderied, M. W. |title=Bat echolocation calls: adaptation and convergent evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |year=2007 |pages=905–912 |doi=10.1098/Rspb.2006.0200 |pmid=17251105 |issue=1612 |pmc=1919403}}</ref><ref>{{cite journal|last1=Fenton|first1=M. B.|last2=Faure|first2=P. A.|last3=Ratcliffe|first3=J. M.|year=2012|title=Evolution of high duty cycle echolocation in bats|journal=The Journal of Experimental Biology|volume=215|issue=17|pages=2935–2944|doi=10.1242/jeb.073171|pmid=22875762|s2cid=405317|doi-access=free}}</ref>
-
-In addition to echolocating prey, bat ears are sensitive to sounds made by their prey, such as the fluttering of moth wings. The complex geometry of ridges on the inner surface of bat ears helps to sharply focus echolocation signals, and to passively listen for any other sound produced by the prey. These ridges can be regarded as the acoustic equivalent of a [[Fresnel lens]], and exist in a large variety of unrelated animals, such as the [[aye-aye]], [[lesser galago]], [[bat-eared fox]], [[mouse lemur]], and others.<ref>{{cite journal |doi=10.2307/3546476 |last1=Pavey |first1=C. R. |last2=Burwell |first2=C. J. |year=1998 |title=Bat Predation on Eared Moths: A Test of the Allotonic Frequency Hypothesis |journal=Oikos |volume=81 |issue=1 |pages=143–151 |jstor=3546476 |bibcode=1998Oikos..81..143P }}</ref><ref>{{cite web|url=http://apps.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf|archive-url=https://web.archive.org/web/20200325122845/http://www.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf|url-status=live|archive-date=25 March 2020|title=The Bat's Ear as a Diffraction Grating|first=W. A.|last=Sowell|year=1983|publisher=Air Force Institute of Technology}}</ref><ref>{{cite journal |pmid=19425684 |doi=10.1121/1.3097500 |volume=125 |issue=5 |title=Model predicts bat pinna ridges focus high frequencies to form narrow sensitivity beams |year=2009 |journal= The Journal of the Acoustical Society of America|pages=3454–3459 |bibcode=2009ASAJ..125.3454K |last1=K. |first1=Roman}}</ref> Bats can estimate the elevation of their target using the [[interference pattern]]s from the echoes reflecting from the [[tragus (ear)|tragus]], a flap of skin in the external ear.<ref name=muller2004>{{cite journal |last=Muller |first=R. |year=2004 |title=A numerical study of the role of the tragus in the big brown bat |journal= The Journal of the Acoustical Society of America|volume=116 |pages=3701–3712 |doi=10.1121/1.1815133 |pmid=15658720 |issue=6 |bibcode=2004ASAJ..116.3701M }}</ref>
-[[File:Bertholdiatrigona.jpg|thumb|The [[Bertholdia trigona|tiger moth]] (''Bertholdia trigona'') can [[echolocation jamming|jam]] bat echolocation.<ref name=corcoran2009/><ref name=hristov2005/>]]
-
-By repeated scanning, bats can mentally construct an accurate image of the environment in which they are moving and of their prey.<ref>{{cite journal |pmid=19282498 |doi=10.1242/jeb.024620 |volume=212 |issue=Pt 7 |title=Acoustic scanning of natural scenes by echolocation in the big brown bat, ''Eptesicus fuscus'' |pmc=2726860 |year=2009 |journal=Journal of Experimental Biology |pages=1011–1020 |last1=Surlykke |first1=A. |last2=Ghose |first2=K. |last3=Moss |first3=C. F.}}</ref> Some species of moth have exploited this, such as the [[Arctiidae|tiger moths]], which produces [[aposematic]] ultrasound signals to warn bats that they are chemically protected and therefore distasteful.<ref name=corcoran2009>{{cite journal|last1=Corcoran |first1=A. J. |first2=J. R. |last2=Barber |first3=W. E. |last3=Conner |s2cid=206520028 |title=Tiger moth jams bat sonar |journal=Science |year=2009 |volume=325 |pages=325–327 |doi=10.1126/science.1174096|issue=5938 |pmid=19608920 |bibcode=2009Sci...325..325C }}</ref><ref name=hristov2005>{{cite journal |last1=Hristov |first1=N. I. |first2=W. E. |last2=Conner |title=Sound strategy: acoustic aposematism in the bat–tiger moth arms race |journal=Naturwissenschaften |year=2005 |volume=92 |pages=164–169 |pmid=15772807 |doi=10.1007/s00114-005-0611-7 |issue=4 |bibcode=2005NW.....92..164H|s2cid=18306198 }}</ref> Moth species including the tiger moth can produce signals to [[Echolocation jamming|jam bat echolocation]]. Many moth species have a hearing organ called a [[tympanal organ|tympanum]], which responds to an incoming bat signal by causing the moth's flight muscles to twitch erratically, sending the moth into random evasive manoeuvres.<ref>{{cite book |first1=J. |last1=Strauß |first2=R. |last2=Lakes-Harlan |series=Animal Signals and Communication |volume=1 |year=2014 |title=Insect Hearing and Acoustic Communication |chapter=Evolutionary and Phylogenetic Origins of Tympanal Hearing Organs in Insects |editor-first=B. |editor-last=Hedwig |publisher=Springer |isbn=978-3-642-40462-7 |doi=10.1007/978-3-642-40462-7_2 |pages=5–26}}</ref><ref>{{cite book |editor1-first=R. R. |editor1-last=Hoy |editor2-first=R. R. |editor2-last=Fay |editor3-first=A. N. |editor3-last=Popper |first=J. H. |last=Fullard |year=1998|title=Comparative Hearing: Insects |chapter=Moth Ears and Bat Calls: Coevolution or Coincidence? |series=Springer Handbook of Auditory Research |publisher=Springer |chapter-url={{google books |plainurl=yes |id=T-3jBwAAQBAJ |pages=279–326}} |isbn=978-1-4612-6828-4}}</ref><ref>{{cite journal |last1=Takanashi |first1=Takuma |last2=Nakano |first2=Ryo |last3=Surlykke |first3=A. |last4=Tatsuta |first4=H. |last5=Tabata |first5=J. |last6=Ishikawa |first6=Y. |last7=Skals |first7=N. |year= 2010|title=Variation in Courtship Ultrasounds of Three Ostrinia Moths with Different Sex Pheromones |journal=PLOS ONE|volume=5 |issue=10 |pages=e13144 |doi=10.1371/journal.pone.0013144|pmid=20957230 |bibcode=2010PLoSO...513144T |pmc=2949388|doi-access=free }}</ref>
-
-====Vision====
-
-The eyes of most microbat species are small and poorly developed, leading to poor [[visual acuity]], but no species is blind.<ref>{{cite web |author=Sophasarun, N. |title=Experts debunk bats' bad rap |work=Online extra |publisher=National Geographic |url=http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html |archive-url=https://web.archive.org/web/20071230022439/http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html |url-status=dead |archive-date=30 December 2007 |access-date=14 November 2017}}</ref> Most microbats have [[mesopic vision]], meaning that they can detect light only in low levels, whereas other mammals have [[photopic vision]], which allows colour vision. Microbats may use their vision for orientation and while travelling between their roosting grounds and feeding grounds, as echolocation is effective only over short distances. Some species can detect [[ultraviolet]] (UV). As the bodies of some microbats have distinct coloration, they may be able to discriminate colours.<ref name=molecule/><ref>{{cite journal |first1=B. |last1=Müller |first2=M. |last2=Glösmann |first3=L.|last3=Peichl |first4=G. C. |last4=Knop |first5=C. |last5=Hagemann |first6=J. |last6=Ammermüller |year=2009 |title=Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors |journal=PLOS ONE|volume=4 |issue=7 |pages=e6390 |doi=10.1371/journal.pone.0006390 |pmid=19636375 |pmc=2712075|bibcode=2009PLoSO...4.6390M |doi-access=free }}</ref><ref>{{cite journal|first1=Y.-Y. |last1=Shen |first2=J. |last2=Liu |first3=D. M. |last3=Irwin |first4=Y.-P. |last4=Zhang |year=2010 |title=Parallel and Convergent Evolution of the Dim-Light Vision Gene ''RH1'' in Bats (Order: Chiroptera) |journal=PLOS ONE|volume=5 |issue=1 |pages=e8838 |doi=10.1371/journal.pone.0008838 |pmid=20098620 |pmc=2809114|bibcode=2010PLoSO...5.8838S |doi-access=free }}</ref><ref name=wang2004/>
-
-Megabat species often have eyesight as good as, if not better than, human vision. Their eyesight is adapted to both night and daylight vision, including some colour vision.<ref name=wang2004>{{cite journal |last1=Wang |first1=D. |last2=Oakley |first2=T. |last3=Mower |first3=J. |last4=Shimmin |first4=L. C. |last5=Yim |first5=S. |last6=Honeycutt |first6=R. L. |last7=Tsao |first7=H. |last8=Li |first8=W. H. |year=2004 |title=Molecular evolution of bat color vision genes |journal=Molecular Biology and Evolution |volume=21 |issue=2 |pages=295–302 |doi=10.1093/molbev/msh015 |pmid=14660703|doi-access=free }}</ref>
-
-====Magnetoreception====
-
-Microbats make use of [[magnetoreception]], in that they have a high sensitivity to the [[Earth's magnetic field]], as birds do. Microbats use a polarity-based compass, meaning that they differentiate north from south, unlike birds, which use the strength of the magnetic field to differentiate [[latitude]]s, which may be used in long-distance travel. The mechanism is unknown but may involve [[magnetite]] particles.<ref>{{cite journal |first1=Y. |last1=Wang |first2=Y. |last2=Pan |first3=S. |last3=Parsons |first4=M. |last4=Walker |first5=S. |last5=Zhang |year=2007 |title=Bats Respond to Polarity of a Magnetic Field |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |issue=1627 |pages=2901–2905 |doi=10.1098/rspb.2007.0904 |pmc=2288691 |pmid=17848365}}</ref><ref>{{cite journal |first1=L.-X. |last1=Tian |first2=Y.-X. |last2=Pan |first3=W. |last3=Metzner |first4=J.-S. |last4=Zhang |first5=B.-F. |last5=Zhang |year=2015 |title=Bats Respond to Very Weak Magnetic Fields |journal=PLOS ONE|volume=10 |issue=4 |pages=e0123205 |doi=10.1371/journal.pone.0123205 |pmid=25922944 |pmc=4414586 |bibcode=2015PLoSO..1023205T|doi-access=free }}</ref>
-
-===Thermoregulation===
-
-[[File:wiki bat.jpg|thumb|right|upright=1.2|Thermographic image of a bat using trapped air as insulation]]
-
-Most bats are [[homeothermic]] (having a stable body temperature), the exception being the vesper bats (Vespertilionidae), the horseshoe bats (Rhinolophidae), the free-tailed bats (Molossidae), and the bent-winged bats (Miniopteridae), which extensively use [[heterothermy]] (where body temperature can vary).<ref name="Nowack 2017">{{cite journal| last1=Nowack| first1= J.| last2= Stawski| first2= C.| last3= Geiser| first3= F.| date=2017| title= More functions of torpor and their roles in a changing world| journal= Journal of Comparative Physiology B| volume= 187| issue=5–6| pages= 889–897| doi= 10.1007/s00360-017-1100-y| pmid= 28432393| pmc= 5486538}}</ref><ref>{{Cite journal |title=The importance of temporal heterothermy in bats |journal=J Zool |last1=Stawski |first1=C. |volume=292 |pages=86–100 |last2=Willis |first2=C. K. R. |doi=10.1111/jzo.12105 |last3=Geiser |first3=F. |date=2014|issue=2 |doi-access=free }}</ref> Compared to other mammals, bats have a high [[thermal conductivity]]. The wings are filled with blood vessels, and lose body heat when extended. At rest, they may wrap their wings around themselves to trap a layer of warm air. Smaller bats generally have a higher metabolic rate than larger bats, and so need to consume more food in order to maintain homeothermy.{{sfn|Altringham|2011|pages=99–100}}
-
-Bats may avoid flying during the day to prevent overheating in the sun, since their dark wing-membranes absorb solar radiation. Bats may not be able to dissipate heat if the ambient temperature is too high;<ref>{{cite journal |first1=C. C. |last1=Voigt |first2=D. |last2=Lewanzik |year=2011 |title=Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats |journal=Proceedings of the Royal Society B: Biological Sciences |volume=278 |issue=1716 |pages=2311–2317 |doi=10.1098/rspb.2010.2290 |pmc=3119008 |pmid=21208959}}</ref> they use saliva to cool themselves in extreme conditions.<ref name=pennycuick/> Among megabats, the flying fox ''[[Pteropus hypomelanus]]'' uses saliva and wing-fanning to cool itself while roosting during the hottest part of the day.<ref name="Ochoa-AcuñaKunz1999">{{cite journal |last1=Ochoa-Acuña |first1=H. |last2=Kunz |first2=T.H. |title=Thermoregulatory behavior in the small island flying fox, ''Pteropus hypomelanus'' (Chiroptera: Pteropodidae) |journal=Journal of Thermal Biology |volume=24 |issue=1 |year=1999 |pages=15–20 |doi=10.1016/S0306-4565(98)00033-3|citeseerx=10.1.1.581.38 }}</ref> Among microbats, the [[Yuma myotis]] (''Myotis yumanensis''), the Mexican free-tailed bat, and the [[pallid bat]] (''Antrozous pallidus'') cope with temperatures up to {{cvt|45|C|F}} by panting, salivating, and licking their fur to promote evaporative cooling; this is sufficient to dissipate twice their metabolic heat production.<ref name="LichtLeitner1967">{{cite journal |last1=Licht |first1=Paul |last2=Leitner |first2=Philip |title=Physiological responses to high environmental temperatures in three species of microchiropteran bats |journal=Comparative Biochemistry and Physiology |volume=22 |issue=2 |year=1967 |pages=371–387 |doi=10.1016/0010-406X(67)90601-9}}</ref>
-
-Bats also possess a system of [[sphincter]] valves on the arterial side of the vascular network that runs along the edge of their wings. When fully open, these allow oxygenated blood to flow through the [[capillary]] network across the wing membrane; when contracted, they [[shunt (medical)|shunt]] flow directly to the veins, bypassing the wing capillaries. This allows bats to control how much heat is exchanged through the flight membrane, allowing them to release heat during flight. Many other mammals use the capillary network in oversized ears for the same purpose.<ref>{{cite book |chapter-url={{google books|plainurl=yes|id=gI-Sly7oq7QC|page=43}} |chapter=The Circulatory and Respiratory Systems |title=The Biology of Bats |last=Neuweiler |first=Gerhard |year=2000 |publisher=Oxford University Press |isbn=978-0-1950-9951-5 |pages=43–62}}</ref>
-
-====Torpor====
-
-[[File:Tri-colored bat in torpor.JPG|thumb|upright|A [[tricoloured bat]] (''Perimyotis subflavus'') in [[torpor]]]]
-
-[[Torpor]], a state of decreased activity where the body temperature and [[metabolism]] decreases, is especially useful for bats, as they use a large amount of energy while active, depend upon an unreliable food source, and have a limited ability to store fat. They generally drop their body temperature in this state to {{convert|6|–|30|C|F}}, and may reduce their energy expenditure by 50 to 99%.<ref>{{cite journal |last1=Geiser |first1=F. |last2=Stawski |first2=C. |year=2011 |title=Hibernation and Torpor in Tropical and Subtropical Bats in Relation to Energetics, Extinctions, and the Evolution of Endothermy |journal=Integrative and Comparative Biology |volume=51 |issue=3 |pages=337–338 |doi=10.1093/icb/icr042 |pmid=21700575|doi-access= }}</ref> Tropical bats may use it to avoid predation, by reducing the amount of time spent on foraging and thus reducing the chance of being caught by a predator.<ref>{{cite journal |first1=C. |last1=Stawski |first2=F.|last2=Geiser|year=2010|title=Fat and Fed: Frequent Use of Summer Torpor in a Subtropical Bat |journal=Naturwissenschaften |volume=97|issue=1|pages=29–35 |doi=10.1007/s00114-009-0606-x |pmid=19756460 |bibcode=2010NW.....97...29S|s2cid=9499097 }}</ref> Megabats were generally believed to be homeothermic, but three species of small megabats, with a mass of about {{convert|50|g|oz|frac=4|abbr=off}}, have been known to use torpor: the [[common blossom bat]] (''Syconycteris australis''), the [[long-tongued nectar bat]] (''Macroglossus minimus''), and the [[eastern tube-nosed bat]] (''Nyctimene robinsoni''). Torpid states last longer in the summer for megabats than in the winter.<ref>{{cite book |url={{google books|plainurl=yes|id=nA0TDAAAQBAJ|page=14}} |first1=A. |last1=Zubaid |first2=G. F. |last2=McCracken |first3=T. |last3=Kunz |year=2006 |title=Functional and Evolutionary Ecology of Bats |publisher=Oxford University Press |pages=14–16 |isbn=978-0-19-515472-6}}</ref>
-
-During [[hibernation]], bats enter a torpid state and decrease their body temperature for 99.6% of their hibernation period; even during periods of arousal, when they return their body temperature to normal, they sometimes enter a shallow torpid state, known as "heterothermic arousal".<ref>{{cite journal |first=K. |last=Knight |year=2012 |title=Bats Use Torpor to Minimise Costs |journal=Journal of Experimental Biology |volume=215 |issue=12 |pages=iii |doi=10.1242/jeb.074823|doi-access=free }}</ref> Some bats [[aestivation|become dormant during higher temperatures]] to keep cool in the summer months.<ref>{{cite journal |first1=A. |last1=Bondarenco |first2=G. |last2=Körtner |first3=F. |last3=Geiser |year=2016 |title=How to Keep Cool in a Hot Desert: Torpor in Two Species of Free-Ranging Bats in Summer |journal=Temperature |volume=6 |issue=3 |pages=476–483 |doi=10.1080/23328940.2016.1214334 |pmc=5079220 |pmid=28349087}}</ref>
-
-Heterothermic bats during long migrations may fly at night and go into a torpid state roosting in the daytime. Unlike migratory birds, which fly during the day and feed during the night, nocturnal bats have a conflict between travelling and eating. The energy saved reduces their need to feed, and also decreases the duration of migration, which may prevent them from spending too much time in unfamiliar places, and decrease predation. In some species, pregnant individuals may not use torpor.<ref>{{cite journal |first1=L. P. |last1=McGuire |first2=K. A. |last2=Jonassen |first3=C. G. |last3=Guglielmo|year=2014 |title=Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy |journal=PLOS ONE|volume=9 |issue=12 |pages=e115724 |doi=10.1371/journal.pone.0115724 |pmid=25551615|pmc=4281203 |bibcode=2014PLoSO...9k5724M|doi-access=free }}</ref><ref>{{cite journal |first1=I. M. |last1=Hamilton |first2=R. M. R. |last2=Barclay |year=1994 |title=Patterns of daily torpor and day-roost selection by male and female big brown bats (''Eptesicus fuscus'') |journal=Canadian Journal of Zoology |volume=72 |issue=4 |pages=744 |doi=10.1139/z94-100|url=https://zenodo.org/record/8204807 }}</ref>
-
-===Size===
-
-The smallest bat is [[Kitti's hog-nosed bat]] (''Craseonycteris thonglongyai''), which is {{convert|29|–|34|mm|in|frac=8|abbr=on}} long with a {{convert|150|mm|in|frac=2|adj=on}} wingspan and weighs {{convert|2|–|2.6|g|oz|frac=32|abbr=on}}.<ref name=Edge>{{cite web |url=http://www.edgeofexistence.org/mammals/species_info.php?id=49 |title=Bumblebee bat (''Craseonycteris thonglongyai'') |work=[[EDGE Species]] |access-date=10 April 2008 |archive-date=19 August 2016 |archive-url=https://web.archive.org/web/20160819233333/http://www.edgeofexistence.org/mammals/species_info.php?id=49 |url-status=dead }}</ref> It is also arguably the smallest [[extant taxon|extant]] species of mammal, next to the [[Etruscan shrew]].<ref>{{cite web |title=Kitti's Hog-Nosed Bat Is World's Smallest Mammal |date=3 December 2012 |publisher=SciTechDaily |url=https://scitechdaily.com/kittis-hog-nosed-bat-is-worlds-smallest-mammal/ |access-date=1 November 2017}}</ref> The largest bats are a few species of ''[[Pteropus]]'' megabats and the [[giant golden-crowned flying fox]], (''Acerodon jubatus''), which can weigh {{convert|1.6|kg|lb|frac=4|abbr=on}} with a wingspan of {{convert|1.7|m|ftin|abbr=on}}.<ref>Nowak, R. M., editor (1999). ''Walker's Mammals of the World.'' Vol. 1. 6th edition. pp. 264–271. {{ISBN|0-8018-5789-9}}</ref> Larger bats tend to use lower frequencies and smaller bats higher for echolocation; high-frequency echolocation is better at detecting smaller prey. Small prey may be absent in the diets of large bats as they are unable to detect them.<ref name=gonsalves>{{cite journal |first1=L. |last1=Gonsalves |first2=B. |last2=Bicknell |first3=B.|last3=Law |first4=C. |last4=Webb |first5=V. |last5=Monamy |year=2013 |title=Mosquito Consumption by Insectivorous Bats: Does Size Matter? |journal=PLOS ONE|volume=8 |issue=10 |pages=e77183 |doi=10.1371/journal.pone.0077183 |pmid=24130851 |pmc=3795000 |bibcode=2013PLoSO...877183G|doi-access=free }}</ref> The adaptations of a particular bat species can directly influence what kinds of prey are available to it.<ref>{{cite journal |first1=D. K. N. |last1=Dechmann |first2=K. |last2=Safi |first3=M. J.|last3=Vonhof |year=2006 |title=Matching Morphology and Diet in the Disc-Winged Bat ''Thyroptera tricolor'' (Chiroptera) |journal=Journal of Mammalogy |volume=87 |issue=5 |pages=1013–1019 |doi=10.1644/05-MAMM-A-424R2.1|doi-access=free }}</ref>
-
-==Ecology==
-
-[[File:Common tent-making bats.JPG|thumb|left|[[Tent-making bat]]s (''Uroderma bilobatum'') in Costa Rica]]
-
-Flight has enabled bats to become one of the most widely distributed groups of mammals.<ref>{{cite journal |last1=Thomas |first1=S. P. |last2=Suthers |first2=R. A. |year=1972 |title=Physiology and energetics of bat flight |journal=Journal of Experimental Biology |volume=57 |issue=2 |pages=317–335 |doi=10.1242/jeb.57.2.317 |url=http://jeb.biologists.org/content/jexbio/57/2/317.full.pdf}}</ref> Apart from the Arctic, the Antarctic and a few isolated oceanic islands, bats exist in almost every habitat on Earth.<ref>{{cite web |title=Bats of the World |url=http://www.bats.org.uk/pages/bats_of_the_world.html |publisher=Bat Conservation Trust |access-date=16 January 2011
- |archive-url=https://web.archive.org/web/20110105143810/http://www.bats.org.uk/pages/bats_of_the_world.html |archive-date=5 January 2011 |url-status=live}}</ref> Tropical areas tend to have more species than temperate ones.{{sfn|Fenton|Simmons|2015|pages=32}} Different species select different habitats during different seasons, ranging from seasides to mountains and deserts, but they require suitable roosts. Bat roosts can be found in hollows, crevices, foliage, and even human-made structures, and include "tents" the bats construct with leaves.<ref>{{cite book |title=Grzimek's Animal Life Encyclopedia: Vol 13 Mammals II |year=2003 |edition=2nd |page=311 |isbn=978-0-7876-5362-0}}</ref> Megabats generally roost in trees.{{sfn|Altringham|2011|page=21}} Most microbats are [[Nocturnality|nocturnal]]<ref name="bats">{{cite web |url=http://www.si.edu/Encyclopedia_SI/nmnh/batfacts.htm |publisher=Smithsonian Institution |title=The Art and Science of Bats|date=7 December 2010}}</ref> and megabats are typically [[Diurnal cycle|diurnal]] or [[crepuscular]].<ref name="Schwab"/><ref>{{cite book |author=Alexander, D. E. |year=2015 |title=On the Wing: Insects, Pterosaurs, Birds, Bats and the Evolution of Animal Flight |publisher=Oxford University Press |page=137 |isbn=978-0199996773}}</ref> Microbats are known to exhibit diurnal behaviour in temperate regions during summer when there is insufficient night time to forage,<ref>{{cite journal |last1=Speakman |first1=J. R. |title=The function of daylight flying in British bats |journal=Journal of Zoology |date=1990 |volume=220 |issue=1 |pages=101–113 |doi=10.1111/j.1469-7998.1990.tb04296.x}}</ref><ref>{{cite journal |last1=Speakman |first1=J. R. |last2=Rydell |first2=J. |last3=Webb |first3=P. I. |last4=Hayes |first4=J. P. |last5=Hays |first5=G. C. |last6=Hulbert |first6=I. a. R. |last7=McDevitt |first7=R. M. |title=Activity patterns of insectivorous bats and birds in northern Scandinavia (69° N), during continuous midsummer daylight |journal=Oikos |date=2000 |volume=88 |issue=1 |pages=75–86 |doi=10.1034/j.1600-0706.2000.880109.x|bibcode=2000Oikos..88...75S }}</ref> and in areas where there are few avian predators during the day.<ref>{{cite journal |last1=Chua |first1=Marcus A. H. |last2=Aziz |first2=Sheema Abdul |title=Into the light: atypical diurnal foraging activity of Blyth's horseshoe bat, Rhinolophus lepidus (Chiroptera: Rhinolophidae) on Tioman Island, Malaysia |journal=Mammalia |date=19 December 2018 |volume=83 |issue=1 |pages=78–83 |doi=10.1515/mammalia-2017-0128 |s2cid=90531252 |doi-access=free }}</ref><ref>{{cite journal |last1=Moore |first1=N. W. |title=The diurnal flight of the Azorean bat (Nyctalus azoreum) and the avifauna of the Azores |journal=Journal of Zoology |date=1975 |volume=177 |issue=4 |pages=483–486 |doi=10.1111/j.1469-7998.1975.tb02248.x}}</ref>
-
-In temperate areas, some microbats [[Animal migration|migrate]] hundreds of kilometres to winter hibernation dens;{{sfn|Fenton|2001|pages=60–62}} others pass into torpor in cold weather, rousing and feeding when warm weather allows insects to be active.{{sfn|Fenton|2001|pages=93–94}} Others retreat to caves for winter and hibernate for as much as six months.{{sfn|Fenton|2001|pages=93–94}} Microbats rarely fly in rain; it interferes with their echolocation, and they are unable to hunt.<ref>{{cite web |author=Wolchover, N. |date=5 May 2011 |title=Why Bats Hate Rain |publisher=LiveScience |url=https://www.livescience.com/33258-bats-hate-rain.html |access-date= 19 December 2017}}</ref>
-
-===Food and feeding===
-[[File:Microbats' hunting.ogv|thumb|Bats feeding on insects over a lake]]
-Different bat species have different diets, including insects, nectar, pollen, fruit and even vertebrates.{{sfn|Fenton|Simmons|2015|pages=104–107}} Megabats are mostly fruit, nectar and pollen eaters.<ref name="Schwab">{{cite journal |author1=Schwab, I. R. |author2=Pettigrew, J. |year=2005 |title=A choroidal sleight of hand |journal=British Journal of Ophthalmology |volume=89 |issue=11 |page=1398 |doi=10.1136/bjo.2005.077966|pmid=16267906 |pmc=1772916 }}</ref> Due to their small size, high-metabolism and rapid burning of energy through flight, bats must consume large amounts of food for their size. Insectivorous bats may eat over 120 percent of their body weight per day, while frugivorous bats may eat over twice their weight.{{sfn|Fenton|Simmons|2015|page=116}} They can travel significant distances each night, exceptionally as much as {{convert|38.5|km|mi|frac=2|abbr=on}} in the spotted bat (''[[Euderma maculatum]]''), in search of food.<ref>{{cite journal |last1=Rabe |first1=M. J.|display-authors=et al |title=Long Foraging Distance for a Spotted Bat (Euderma Maculatum) in Northern Arizona |journal=The Southwestern Naturalist |date=June 1998 |volume=43 |issue=2 |pages=266–269 |jstor=30055364 }}</ref> Bats use a variety of hunting strategies.<ref name=gonsalves/> Bats get most of their water from the food they eat; many species also drink from water sources like lakes and streams, flying over the surface and dipping their tongues into the water.{{sfn|Fenton|Simmons|2015|pages=76}}
-
-The Chiroptera as a whole are in the process of losing the ability to synthesise [[vitamin C]].<ref name="pmid22069493">{{cite journal |year=2011 |title=Recent loss of vitamin C biosynthesis ability in bats |journal=PLOS ONE|volume=6 |issue=11 |pages=e27114 |bibcode=2011PLoSO...627114C |doi=10.1371/journal.pone.0027114 |pmc=3206078 |pmid=22069493 |last1=Cui |first1=J. |last2=Yuan |first2= X. |last3=Wang |first3=L. |last4=Jones |first4= G. |last5= Zhang |first5=S.|doi-access=free }}</ref> In a test of 34 bat species from six major families, including major insect- and fruit-eating bat families, all were found to have lost the ability to synthesise it, and this loss may derive from a common bat ancestor, as a single mutation.<ref>{{cite journal |author1=Jenness, R. |author2=Birney, E. |author3=Ayaz, K. |year=1980 |title=Variation of L-gulonolactone oxidase activity in placental mammals |journal=Comparative Biochemistry and Physiology B |volume=67 |issue=2 |pages=195–204 |doi=10.1016/0305-0491(80)90131-5}}</ref>{{efn|Earlier reports that only fruit bats were deficient were based on smaller samples.<ref name="pmid21037206"/>}} At least two species of bat, the frugivorous bat (''Rousettus leschenaultii'') and the insectivorous bat (''Hipposideros armiger''), have retained their ability to produce vitamin C.<ref name="pmid21037206">{{cite journal |author1=Cui, J. |author2=Pan, Y. H. |author3=Zhang, Y. |author4=Jones, G. |author5=Zhang, S. |title=Progressive pseudogenization: vitamin C synthesis and its loss in bats |journal=Mol. Biol. Evol. |volume=28 |issue=2 |pages=1025–31 |year=2011 |pmid=21037206 |doi=10.1093/molbev/msq286|doi-access=free }}</ref>
-
-====Insects====
-
-Most microbats, especially in temperate areas, prey on insects.{{sfn|Fenton|Simmons|2015|pages=104–107}} The diet of an insectivorous bat may span many species,{{sfn|Fenton|Simmons|2015|pages=108–110}} including [[flies]], [[mosquito]]s, [[beetle]]s, moths, [[grasshopper]]s, [[Cricket (insect)|cricket]]s, [[termite]]s, [[bee]]s, [[wasp]]s, [[mayflies]] and [[caddisflies]].<ref name="MacDonald">{{Cite book |author=Jones, G. |contribution=Bats |year=2001 |title=The Encyclopedia of Mammals |edition=2nd |editor=MacDonald, D. |publisher=Oxford University Press |pages=754–775 |isbn=978-0-7607-1969-5}}</ref><ref name="Wray Jusino Banik Palmer 2018">{{cite journal | last1=Wray | first1=Amy K. | last2=Jusino | first2=Michelle A. | last3=Banik | first3=Mark T. | last4=Palmer | first4=Jonathan M. | last5=Kaarakka | first5=Heather | last6=White | first6=J. Paul | last7=Lindner | first7=Daniel L. | last8=Gratton | first8=Claudio | last9=Peery | first9=M Zachariah | title=Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats | journal=Journal of Mammalogy | volume=99 | issue=3 | pages=668–674 | year=2018 | doi=10.1093/jmammal/gyy044 | doi-access=free }}</ref><ref>{{cite journal |last1=Patriquin |first1=Krista J |last2=Guy |first2=Cylita |last3=Hinds |first3=Joshua |last4=Ratcliffe |first4=John M |title=Male and female bats differ in their use of a large urban park |journal=Journal of Urban Ecology |date=1 January 2019 |volume=5 |issue=1 |pages=juz015 |doi=10.1093/jue/juz015 |url=https://academic.oup.com/jue/article/5/1/juz015/5572591 |access-date=13 December 2020|doi-access=free }}</ref> Large numbers of Mexican free-tailed bats (''Tadarida brasiliensis'') fly hundreds of metres above the ground in central Texas to feed on migrating moths.<ref>{{cite journal |pmid=21669777 |year=2008 |last1=McCracken |first1=G. F. |title=Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: Links to migratory insect populations |journal=Integrative and Comparative Biology |volume=48 |issue=1 |pages=107–118 |last2=Gillam |first2=E. H. |last3=Westbrook |first3=J. K. |last4=Lee |first4=Y. F. |last5=Jensen |first5=M. L. |last6=Balsley |first6=B. B. |doi=10.1093/icb/icn033|doi-access=free }}</ref> Species that hunt insects in flight, like the [[little brown bat]] (''Myotis lucifugus''), may catch an insect in mid-air with the mouth, and eat it in the air or use their tail membranes or wings to scoop up the insect and carry it to the mouth.<ref>{{cite web |title=Little Brown Bat |publisher=Penn State University |url=http://www.psu.edu/dept/nkbiology/naturetrail/speciespages/little_brown_bat.html|access-date=13 September 2017}}</ref>{{sfn|Fenton|Simmons|2015|page=120}} The bat may also take the insect back to its roost and eat it there.<ref>{{cite journal |last1=Fitt |first1=G. P. |year=1989 |title=The ecology of Heliothis species in relation to agro-ecosystems |journal=Annual Review of Entomology |volume=34 |pages=17–52 |doi=10.1146/annurev.ento.34.1.17}}</ref> Slower moving bat species, such as the [[brown long-eared bat]] (''Plecotus auritus'') and many horseshoe bat species, may take or [[Bat flight#Gleaning|glean]] insects from vegetation or hunt them from perches.<ref name="MacDonald"/> Insectivorous bats living at high latitudes have to consume prey with higher energetic value than tropical bats.<ref>{{cite journal|last1=Boyles |first1=J. G. |last2=McGuire |first2=L. P. |last3=Boyles |first3=E. |last4=Reimer |first4=J. P. |last5=Brooks |first5=C. A. |last6=Rutherford |first6=R. W. |last7=Rutherford |first7=T. A. |last8=Whitaker |first8=J. O. Jr.|last9=McCracken |first9=G. F. |year=2016 |title=Physiological and behavioral adaptations in bats living at high latitudes |journal=Physiology and Behavior |volume=165 |pages=322–327 |doi=10.1016/j.physbeh.2016.08.016|pmid=27542518 |s2cid=25361258 }}</ref>
-
-====Fruit and nectar====
-
-[[File:Rousettus aegyptiacus.jpg|thumb|left|An [[Egyptian fruit bat]] (''Rousettus aegyptiacus'') carrying a [[Ficus|fig]]]]
-
-Fruit eating, or frugivory, is found in both major suborders. Bats prefer ripe fruit, pulling it off the trees with their teeth. They fly back to their roosts to eat the fruit, sucking out the juice and spitting the seeds and pulp out onto the ground. This helps disperse the seeds of these fruit trees, which may take root and grow where the bats have left them, and many species of plants depend on bats for [[seed dispersal]].<ref>{{cite web |author1=Simmons, N. B. |author2=Voss, R. S. |author3=Mori, S. A. |title=Bats as Dispersers of Plants in the Lowland Forests of Central French Guiana |publisher=New York Botanical Garden |access-date=14 September 2017 |url=https://www.nybg.org/botany/tlobova/mori/batsplants/batdispersal/batdispersal_frameset.htm}}</ref>{{sfn|Fenton|Simmons|2015|page=115}} The [[Jamaican fruit bat]] (''Artibeus jamaicensis'') has been recorded carrying fruits weighing {{convert|3|-|14|g|oz|frac=16|abbr=on}} or even as much as {{convert|50|g|oz|frac=4|abbr=on}}.<ref name=Ortega2001>{{cite journal |last1=Ortega |first1=J. |last2=Castro-Arellano |first2=I. |year=2001 |title=''Artibeus jamaicensis'' |journal=Mammalian Species|pages=1–9 |issue=662 |doi=10.1644/1545-1410(2001)662<0001:aj>2.0.co;2|s2cid=198969258 }}</ref>
-
-Nectar-eating bats have acquired specialised adaptations. These bats possess long muzzles and long, extensible [[tongue]]s covered in fine bristles that aid them in feeding on particular flowers and plants.{{sfn|Fenton|Simmons|2015|page=115}}<ref name="NGtongue"/> The [[tube-lipped nectar bat]] (''Anoura fistulata'') has the longest tongue of any mammal relative to its body size. This is beneficial to them in terms of pollination and feeding. Their long, narrow tongues can reach deep into the long cup shape of some flowers. When the tongue retracts, it coils up inside the rib cage.<ref name="NGtongue">{{cite web |url=http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html|title=Photo in the News: Bat Has Longest Tongue of Any Mammal |access-date=18 June 2007 |last=Chamberlain |first=T. |date=6 December 2006 |work=National Geographic News |publisher=National Geographic Society |quote=''A. fistulata'' (shown lapping sugar water from a tube) has the longest tongue, relative to body length, of any mammal{{snd}}and now scientists think they know why. |archive-url=https://web.archive.org/web/20070606114143/http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html |archive-date=6 June 2007 |url-status=dead}}</ref> Because of these features, nectar-feeding bats cannot easily turn to other food sources in times of scarcity, making them more prone to extinction than other types of bat.<ref>{{cite journal |last2=Santos-Del-Prado |first2=K. |last3=Arita |first3=H.T. |year=1999 |title=Conservation Biology of Nectar-Feeding Bats in Mexico |journal=Journal of Mammalogy |volume=80 |issue=1 |pages=31–41 |doi=10.2307/1383205|last1=Arita|first1=H. T.|jstor=1383205 |doi-access= }}</ref><ref>{{cite journal |last2=Hobson |first2=K. A. |last3=Adriana |first3=M. A. |last4=Daniel |first4=E. B. |last5=Sanchez-Corero |first5=V. |last6=German |first6=M. C. |year=2001|title=The Role of Fruits and Insects in the Nutrition of Frugivorous Bats: Evaluating the Use of Stable Isotope Models |journal=Biotropica |volume=33 |issue=3 |pages=520–528 |doi=10.1111/j.1744-7429.2001.tb00206.x |last1=Gerardo |first1=H.|bibcode=2001Biotr..33..520H |s2cid=247675112 }}</ref> Nectar feeding also aids a variety of plants, since these bats serve as [[pollinator]]s, as pollen gets attached to their fur while they are feeding. Around 500 species of flowering plant rely on bat pollination and thus tend to open their flowers at night.{{sfn|Fenton|Simmons|2015|page=115}} Many rainforest plants depend on bat pollination.<ref>{{cite journal |last1=Hodgkison |first1=R. |last2=Balding |first2=S. T. |last3=Zuibad |first3=A. |last4=Kunz |first4=T. H. |year=2003 |title=Fruit Bats (Chiroptera: Pteropodidae) as Seed Dispersers and Pollinators in a Lowland Malaysian Rain Forest |journal=Biotropica |volume=35 |issue=4 |pages=491–502 |doi=10.1111/j.1744-7429.2003.tb00606.x|bibcode=2003Biotr..35..491H |s2cid=86327074 }}</ref>
-
-====Vertebrates====
-
-[[File:GreaterNoctule.JPG|thumb|upright|The [[greater noctule bat]] (''Nyctalus lasiopterus'') uses its large teeth to catch birds.<ref name=popa/>]]
-
-Some bats prey on other vertebrates, such as fish, frogs, lizards, birds and mammals.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|page=107}} The [[fringe-lipped bat]] (''Trachops cirrhosus,'') for example, is skilled at catching frogs. These bats locate large groups of frogs by tracking their mating calls, then plucking them from the surface of the water with their sharp canine teeth.<ref>{{cite journal |author1=Cramer, M. J. |author2=Wilig, M. R. |author3=Jones, C. |year=2001 |title=Trachops cirrhosus|journal=Mammalian Species |issue=656 |pages=1–6|doi=10.1644/1545-1410(2001)656<0001:TC>2.0.CO;2 |s2cid=198968973 }}</ref> The [[greater noctule bat]] can catch birds in flight.<ref name=popa>{{cite journal |first1=A. G. |last1=Popa-Lisseanu |first2=A. |last2=Delgado-Huertas |first3=M. G. |last3=Forero |first4=A. |last4=Rodríguez |first5=R. |last5=Arlettaz |first6=C. |last6=Ibáñez |year=2007 |title=Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds |journal=PLOS ONE|volume=2 |issue=2 |pages=e205 |doi=10.1371/journal.pone.0000205 |pmid=17299585 |pmc=1784064 |bibcode=2007PLoSO...2..205P |doi-access=free }}</ref> Some species, like the greater bulldog bat (''[[Noctilio leporinus]]'') hunt fish. They use echolocation to detect small ripples on the water's surface, swoop down and use specially enlarged claws on their hind feet to grab the fish, then take their prey to a feeding roost and consume it.<ref name="Schnitzler 1994">{{cite journal|author1=Schnitzler, H.-U. |author2=Kalko, E. K. V. |author3=Kaipf, I. |author4=Grinnell, A. D. |year=1994 |title=Fishing and Echolocation Behavior of the Greater Bulldog Bat, ''Noctilio leporinus'', in the Field |journal=Behavioral Ecology and Sociobiology |volume=35 |issue=5 |pages=327–345 |doi=10.1007/BF00184422|s2cid=23782948 }}</ref> At least two species of bat are known to feed on other bats: the [[spectral bat]] (''Vampyrum spectrum''), and the [[ghost bat]] (''Macroderma gigas'').{{sfn|Fenton|2001|pages=4–5}}
-
-====Blood====
-
-[[File:Desmo-boden (cropped).jpg|thumb|The [[common vampire bat]] (''Desmodus rotundus'') feeds on blood ([[hematophagy]]).]]
-
-A few species, specifically the common, [[white-winged vampire bat|white-winged]], and [[Hairy-legged vampire bat|hairy-legged]] vampire bats, feed only on animal blood ([[hematophagy]]). The common vampire bat typically feeds on large mammals such as [[cattle]]; the hairy-legged and white-winged vampires feed on birds.<ref>{{cite book |author=Greenhall, A. M. |year=1961 |title=Bats in Agriculture |page=8 |publisher=A Ministry of Agriculture Publication}}</ref> Vampire bats target sleeping prey and can detect deep breathing.{{sfn|Fenton|Simmons|2015|page=119}} Heat sensors in the nose help them to detect blood vessels near the surface of the skin.<ref name="Wilkinson 1990">{{cite journal |author=Wilkinson, G. |year=1990 |title=Food Sharing in Vampire Bats |url=http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf |journal=Scientific American |volume=262 |issue=21 |pages=76–82 |doi=10.1038/scientificamerican0290-76 |bibcode=1990SciAm.262b..76W |access-date=19 December 2017 |archive-date=21 September 2020 |archive-url=https://web.archive.org/web/20200921025300/http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf |url-status=dead }}</ref> They pierce the animal's skin with their teeth, biting away a small flap,<ref name="Nowak 1991">{{cite book |author=Nowak, R. M. |year=1991 |title=Walker's Mammals of the World |page=[https://archive.org/details/walkersmammalsof01nowa/page/1629 1629] |publisher=Johns Hopkins Press |isbn=978-0-8018-3970-2 |url-access=registration |url=https://archive.org/details/walkersmammalsof01nowa/page/1629 }}</ref> and lap up the blood with their tongues, which have lateral grooves adapted to this purpose.<ref>{{cite web|title=Vampire Bats – The Good, the Bad, and the Amazing|publisher=Natural Science Research Laboratory – Texas Tech|url=http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf|access-date=14 December 2017|archive-url=https://web.archive.org/web/20171215000829/http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf|archive-date=15 December 2017|url-status=dead}}</ref> The blood is kept from clotting by an [[anticoagulant]] in the saliva.<ref name="Nowak 1991"/>
-
-===Predators, parasites, and diseases===
-
-{{Further|Bat virome}}
-
-Bats are subject to predation from [[birds of prey]], such as [[owls]], [[hawks]], and [[falcons]], and at roosts from terrestrial predators able to climb, such as cats.<ref name="RydellSpeakman1995"/> Low-flying bats are vulnerable to [[crocodile]]s.<ref>{{cite web |url=https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo |title=Flying Foxes Vs Freshwater Crocodile |author=BBC Earth |website=Youtube.com |date=10 April 2015 |access-date=19 August 2021 |url-status=live|archive-url=https://web.archive.org/web/20201001170139/https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo |archive-date=1 October 2020 }}</ref> Twenty species of tropical New World [[snake]]s are known to capture bats, often waiting at the entrances of refuges, such as caves, for bats to fly past.<ref name="EsbérardVrcibradic2007">{{cite journal |last1=Esbérard |first1=C. E. L. |last2=Vrcibradic |first2=D. |title=Snakes preying on bats: new records from Brazil and a review of recorded cases in the Neotropical Region |journal=Revista Brasileira de Zoologia |volume=24 |issue=3 |year=2007 |pages=848–853 |doi=10.1590/S0101-81752007000300036|doi-access=free }}</ref> J. Rydell and J. R. Speakman argue that bats evolved nocturnality during the early and middle [[Eocene]] period to avoid predators.<ref name="RydellSpeakman1995">{{cite journal |last1=Rydell |first1=J. |last2=Speakman |first2=J. R. |title=Evolution of nocturnality in bats: Potential competitors and predators during their early history |journal=Biological Journal of the Linnean Society |volume=54 |issue=2 |year=1995 |pages=183–191 |doi=10.1111/j.1095-8312.1995.tb01031.x}}</ref> The evidence is thought by some zoologists to be equivocal so far.<ref name="LimaO'Keefe2013">{{cite journal |last1=Lima |first1=S. L. |last2=O'Keefe |first2=J. M. |title=Do predators influence the behaviour of bats? |journal=Biological Reviews |volume=88 |issue=3 |year=2013 |pages=626–644 |doi=10.1111/brv.12021|pmid=23347323 |s2cid=32118961 |doi-access=free }}</ref>
-[[File:Little Brown Bat with White Nose Syndrome (Greeley Mine, cropped).jpg|thumb|upright|A [[little brown bat]] with [[white nose syndrome]]]]
-
-As are most mammals, bats are hosts to a number of internal and external parasites.<ref name="Léger2020">{{cite journal|last1=Léger|first1=Clément|title=Bat parasites (Acari, Anoplura, Cestoda, Diptera, Hemiptera, Nematoda, Siphonaptera, Trematoda) in France (1762–2018): a literature review and contribution to a checklist|journal=Parasite|volume=27|year=2020|pages=61|issn=1776-1042|doi=10.1051/parasite/2020051|pmid=33206593|pmc=7673352|doi-access=free}} {{open access}}</ref> Among [[ectoparasite]]s, bats carry [[flea]]s and [[mite]]s, as well as specific parasites such as [[bat bug]]s and bat flies ([[Nycteribiidae]] and [[Streblidae]]).<ref>{{cite book |url=https://books.google.com/books?id=Li6_BAAAQBAJ |title=Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths |last1=Klimpel |first1=S. |last2=Mehlhorn |first2=H. |year=2013 |publisher=Springer |isbn=978-3-642-39333-4 |page=87 }}</ref><ref name="Clayton2015"/> Bats are among the few non-aquatic mammalian orders that do not host [[lice]], possibly due to competition from more specialised parasites that occupy the same niche.<ref name="Clayton2015">{{cite book |url=https://books.google.com/books?id=lN0pCwAAQBAJ |title=Coevolution of Life on Hosts: Integrating Ecology and History |last1=Clayton |first1=D. H. |last2=Bush |first2=S. E. |last3=Johnson |first3=K. P. |year=2015 |publisher=University of Chicago Press |isbn=978-0-226-30227-0 |page=28}}</ref>
-
-[[White nose syndrome]] is a condition associated with the deaths of millions of bats in the [[Eastern United States]] and Canada.<ref>{{cite web |url=http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ |title=White-Nose Syndrome (WNS) |publisher=National Wildlife Health Center, U.S. Geological Survey |access-date=3 June 2014 |archive-url=https://web.archive.org/web/20190930212052/https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ |archive-date=30 September 2019 |url-status=dead }}</ref> The disease is named after a white [[fungus]], ''[[Pseudogymnoascus destructans]]'', found growing on the muzzles, ears, and wings of affected bats. The fungus is mostly spread from bat to bat, and causes the disease.<ref>{{cite journal |author1=Lorch, J. M. |author2=Meteyer, C. U. |author3=Behr, M. J. |author4=Boyles, J. G. |author5=Cryan, P. M. |author6=Hicks, A. C. |author7=Ballmann, A. E. |author8=Coleman, J. T. H. |author9=Redell, D. N. |author10=Reeder, D. M. |author11=.Blehert, D. S. |year=2011 |title=Experimental infection of bats with Geomyces destructans causes white-nose syndrome |journal=Nature |volume=480 |issue=7377 |pages=376–378 |doi=10.1038/nature10590|pmid=22031324 |bibcode=2011Natur.480..376L |s2cid=4381156 }}</ref> The fungus was first discovered in central New York State in 2006 and spread quickly to the entire Eastern US north of Florida; mortality rates of 90–100% have been observed in most affected caves.<ref>{{cite web |url=http://www.cwhc-rcsf.ca/wns.php |title=White-Nose Syndrome – Background |publisher=Canadian Cooperative Wildlife Health Centre |access-date=3 June 2014 |archive-date=16 February 2020 |archive-url=https://web.archive.org/web/20200216145004/http://www.cwhc-rcsf.ca/wns.php |url-status=dead }}</ref> [[New England]] and the [[mid-Atlantic states]] have, since 2006, witnessed entire species completely extirpated and others with numbers that have gone from the hundreds of thousands, even millions, to a few hundred or less.<ref>{{cite web |url=http://philadelphia.cbslocal.com/2013/11/14/pennsylvanias-bats-nearly-wiped-out/ |title=Pennsylvania's Bats Nearly Wiped Out |author=Daly, M. |publisher=CBS Philadelphia |date=14 November 2013 |access-date=18 December 2017}}</ref> Nova Scotia, Quebec, Ontario, and New Brunswick have witnessed identical die offs, with the Canadian government making preparations to protect all remaining bat populations in its territory.<ref>{{cite web |url=http://o.canada.com/technology/white-nose-syndrome-killing-canadas-bats |title=White-nose syndrome killing Canada's bats |date=7 June 2012 |publisher=Postmedia Network |author=Gutenberg, G. |access-date=21 April 2016}}</ref> Scientific evidence suggests that longer winters where the fungus has a longer period to infect bats result in greater mortality.<ref>{{cite web |url=http://www.thefreelibrary.com/Canada+%3A+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192 |title=Canada : Environment Canada Announces Funding to Fight Threat of White-nose Syndrome to Bats |publisher=Mena Report |date=6 April 2013 |access-date=3 June 2014 |archive-date=28 March 2019 |archive-url=https://web.archive.org/web/20190328065456/https://www.thefreelibrary.com/Canada+%3a+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192 |url-status=dead }}</ref><ref>{{cite web |url=https://www.nsf.gov/news/news_summ.jsp?cntn_id=124679 |title=Social Bats Pay a Price: Fungal Disease, White-Nose Syndrome ... Extinction? |publisher=The National Science Foundation |date=3 July 2012 |access-date=3 June 2014}}</ref><ref name="FrickPollock2010">{{cite journal |last1=Frick |first1=W. F. |last2=Pollock |first2=J. F. |last3=Hicks |first3=A. C. |last4=Langwig |first4=K. E. |last5=Reynolds |first5=D. S. |last6=Turner |first6=G. G. |last7=Butchkoski |first7=C. M. |last8=Kunz |first8=T. H. |s2cid=43601856 |title=An Emerging Disease Causes Regional Population Collapse of a Common North American Bat Species |journal=Science |volume=329 |issue=5992 |year=2010 |pages=679–682 |doi=10.1126/science.1188594 |pmid=20689016 |bibcode=2010Sci...329..679F |url=https://digitalcommons.usf.edu/kip_articles/143 }}</ref> In 2014, the infection crossed the Mississippi River,<ref>{{cite web |url=https://www.whitenosesyndrome.org/sites/default/files/files/wns_illinois_detection_final_upload.pdf |publisher=Illinois Department of Natural Resources |date=28 February 2013 |title=White-Nose Syndrome Confirmed in Illinois Bats: Illinois becomes 20th state in U.S. to confirm deadly disease in bats}}</ref> and in 2017, it was found on bats in Texas.<ref>{{cite web |url=https://tpwd.texas.gov/newsmedia/releases/?req=20170323c |title=Fungus that Causes White-nose Syndrome in Bats Detected in Texas |publisher=Texas Parks and Wildlife |date=23 March 2017 |access-date=15 December 2017}}</ref>
-
-Bats are [[natural reservoir]]s for a large number of [[zoonosis|zoonotic]] [[pathogen]]s,<ref name="Wong2007">{{cite journal |last=Wong |first=S. |date=October 2006 |title=Bats as a continuing source of emerging infections in humans |journal=Reviews in Medical Virology |publisher=[[John Wiley & Sons]] |volume=17 |issue=2 |pages=67–91 |doi=10.1002/rmv.520 |pmid=17042030 |quote=The currently known viruses that have been found in bats are reviewed and the risks of transmission to humans are highlighted. |author2=Lau, S. |author3=Woo, P. |author4=Yuen, K.-Y.|pmc=7169091 }}</ref> including [[Rabies in animals#Bats|rabies]], endemic in many bat populations,<ref name="McColl2000">{{cite journal |last=McColl |first=K. A. |year= 2000 |title=Bat lyssavirus infections |journal=Revue Scientifique et Technique |volume=19 |issue=1 |pages=177–196 |pmid=11189715 |quote=Bats, which represent approximately 24% of all known mammalian species, frequently act as vectors of lyssaviruses. |author2=Tordo, N. |author3=Setien Aquilar, A. A.|doi=10.20506/rst.19.1.1221 |doi-access= }}</ref><ref name=Calisher2006>{{Cite journal|author1-link=Charles Calisher |last1=Calisher |first1=C. H. |last2=Childs |first2=J. E. |last3=Field |first3=H. E. |last4=Holmes |first4=K. V. |last5=Schountz |first5=T. |year= 2006 |title=Bats: Important Reservoir Hosts of Emerging Viruses |journal=Clinical Microbiology Reviews |volume=19 |issue=3 |pages=531–545 |doi=10.1128/CMR.00017-06 |pmc=1539106 |pmid=16847084}}</ref><ref name="Brüssow2012">{{cite book |last1=Brüssow |first1=H. |title=Viruses: Essential Agents of Life |year=2012 |pages=245–267 |doi=10.1007/978-94-007-4899-6_12|chapter=On Viruses, Bats and Men: A Natural History of Food-Borne Viral Infections |isbn=978-94-007-4898-9 |s2cid=82956979 }}</ref> [[histoplasmosis]] both directly and in guano,<ref name=CDC2014/> [[Henipavirus|Nipah and Hendra viruses]],<ref name="EatonBroder2006">{{cite journal |last1=Eaton |first1=Bryan T. |last2=Broder |first2=Christopher C. |last3=Middleton |first3=Deborah |last4=Wang |first4=Lin-Fa |title=Hendra and Nipah viruses: different and dangerous |journal=Nature Reviews Microbiology |volume=4 |issue=1 |year=2006 |pages=23–35 |doi=10.1038/nrmicro1323|pmid=16357858 |pmc=7097447 }}</ref><ref name="Halpin2000">{{cite journal |last1=Halpin |first1=K. |year=2000 |title=Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus |journal=[[Journal of General Virology]] |volume=81 |issue=8 |pages=1927–1932 |pmid=10900029 |quote=In this paper we describe the isolation of HeV from pteropid bats, corroborating our serological and epidemiological evidence that these animals are a natural reservoir host of this virus. |author2=Young, P. L. |author3=Field, H. E. |author4=Mackenzie, J. S.|doi=10.1099/0022-1317-81-8-1927 |doi-access=free }}</ref> and possibly the [[ebola virus]],<ref name="Leroy2005">{{cite journal |last=Leroy |first=E. M. |year= 2005 |title=Fruit bats as reservoirs of Ebola virus |journal=[[Nature (journal)|Nature]] |volume=438 |issue=7068 |pages=575–576 |bibcode=2005Natur.438..575L |doi=10.1038/438575a |pmid=16319873 |quote=We find evidence of asymptomatic infection by Ebola virus in three species of megabats, indicating that these animals may be acting as a reservoir for this deadly virus. |author2=Kumulungui, B. |author3=Pourrut, X. |author4=Rouque, P.|s2cid=4403209 }}</ref><ref name="SciAm2006">{{cite news |url=http://www.sciam.com/article.cfm?id=going-to-bat |title=Going to Bat |year= 2006 |work=[[Scientific American]] |pages=24, 26 |quote=Long known as vectors for rabies, bats may be the origin of some of the most deadly emerging viruses, including SARS, Ebola, Nipah, Hendra and Marburg. |author=Choi, C. Q.}} Note: This is a lay summary of the various scientific publications cited in the preceding sentence.</ref> whose natural reservoir is yet unknown.<ref name="CDC EVD">{{cite web|url=https://www.cdc.gov/vhf/ebola/about.html| title=What is Ebola Virus Disease?| website=Centers for Disease Control and Prevention| date=5 November 2019| access-date=13 April 2020|quote=Scientists do not know where Ebola virus comes from.}}</ref><ref>{{cite journal|doi=10.1016/j.aogh.2015.02.005|quote=Despite concerted investigative efforts, the natural reservoir of the virus is unknown.|title=Transmission of Ebola Virus Disease: An Overview|year=2015|last1=Rewar|first1=Suresh|last2=Mirdha|first2=Dashrath|journal=Annals of Global Health|volume=80|issue=6|pages=444–51|pmid=25960093|doi-access=free}}</ref> Their high mobility, broad distribution, long life spans, substantial [[sympatry]] (range overlap) of species, and social behaviour make bats favourable hosts and vectors of disease.<ref name=Castro2013/> Reviews have found different answers as to whether bats have more zoonotic viruses than other mammal groups. One 2015 review found that bats, rodents, and primates all harbored significantly more [[zoonotic]] viruses (which can be transmitted to humans) than other mammal groups, though the differences among the aforementioned three groups were not significant (bats have no more zoonotic viruses than rodents and primates).<ref name="Olival">{{cite book|doi=10.1002/9781118818824.ch11|chapter=Are Bats Really 'Special' as Viral Reservoirs? What We Know and Need to Know|title=Bats and Viruses|year=2015|last1=Olival|first1=Kevin J.|last2=Weekley|first2=Cristin C.|last3=Daszak|first3=Peter|pages=281–294|isbn=978-1118818824}}</ref> Another 2020 review of mammals and birds found that the identity of the taxonomic groups did not have any impact on the probability of harboring zoonotic viruses. Instead, more diverse groups had greater viral diversity.<ref name="Mollentze">{{cite journal|doi=10.1073/pnas.1919176117|title=Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts|year=2020|last1=Mollentze|first1=Nardus|last2=Streicker|first2=Daniel G.|journal=Proceedings of the National Academy of Sciences|volume=117|issue=17|pages=9423–9430|pmid=32284401|pmc=7196766|bibcode=2020PNAS..117.9423M |doi-access=free}}</ref>
-
-They seem to be highly resistant to many of the pathogens they carry, suggesting a degree of adaptation to their immune systems.<ref name=Castro2013>{{Cite web |author=Castro, J. |url=http://www.livescience.com/26898-bats-host-human-infecting-viruses.html |title=Bats Host More Than 60 Human-Infecting Viruses |date=6 February 2013 |access-date=19 December 2017 |publisher=Live Science}}</ref><ref>{{Cite journal |last=Dobson |first=A. P. |year= 2005 |title=What Links Bats to Emerging Infectious Diseases? |journal=Science |volume=310 |issue=5748 |pages=628–629 |doi=10.1126/science.1120872 |pmid=16254175|s2cid=84007133 }}</ref><ref>{{Cite web |url=http://www.iflscience.com/plants-and-animals/why-do-bats-transmit-so-many-diseases/ |title=Why Do Bats Transmit So Many Diseases? |date=6 August 2014 |publisher=IFL Science |access-date=19 December 2017}}</ref> Their interactions with livestock and pets, including predation by vampire bats, accidental encounters, and the scavenging of bat carcasses, compound the risk of zoonotic transmission.<ref name=Calisher2006/> Bats are implicated in the emergence of [[severe acute respiratory syndrome]] (SARS) in China, since they serve as natural hosts for [[coronavirus]]es, several from a single cave in [[Yunnan]], one of which developed into the SARS virus.<ref name=CDC2014>{{Cite web |url=https://www.cdc.gov/features/bats/ |title=CDC Features – Take Caution When Bats Are Near |publisher=Centers for Disease Control and Prevention |date=14 April 2014}}</ref><ref name="Li2005">{{cite journal |last=Li |first=W. |date=28 October 2005 |title=Bats are natural reservoirs of SARS-like coronaviruses |journal=[[Science (journal)|Science]] |volume=310 |issue=5748 |pages=676–679 |bibcode=2005Sci...310..676L |doi=10.1126/science.1118391 |pmid=16195424 |quote=The genetic diversity of bat-derived sequences supports the notion that bats are a natural reservoir host of the SARS cluster of coronaviruses.|author2=Shi, Z. |author3=Yu, M. |author4=Ren, W. |s2cid=2971923 |url=https://zenodo.org/record/3949088|doi-access=free }}</ref><ref name="DrostenHu2017">{{cite journal |last1=Drosten |first1=C. |last2=Hu |first2=B. |last3=Zeng |first3=L.-P. |last4=Yang |first4=X.-L. |last5=Ge |first5=Xing-Yi |last6=Zhang |first6=Wei |last7=Li |first7=Bei |last8=Xie |first8=J.-Z. |last9=Shen |first9=X.-R. |last10=Zhang |first10=Yun-Zhi |last11=Wang |first11=N. |last12=Luo |first12=D.-S. |last13=Zheng |first13=X.-S. |last14=Wang |first14=M.-N. |last15=Daszak |first15=P. |last16=Wang |first16=L.-F. |last17=Cui |first17=J. |last18=Shi |first18=Z.-L. |title=Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus |journal=PLOS Pathogens |volume=13 |issue=11 |year=2017 |pages=e1006698 |doi=10.1371/journal.ppat.1006698|pmid=29190287 |pmc=5708621 |doi-access=free }}</ref> However, they neither cause nor spread [[COVID-19]].<ref>{{cite journal |author1=Srinivasulu, C. |name-list-style=amp |author2=Molur, S. |year=2020 |title=Bats don't cause or spread Covid-19 |journal=Zoo's Print |volume=35 |issue=4 |pages=1–3 |url=https://www.zoosprint.zooreach.org/index.php/zp/article/view/5669/5086}}</ref>
-
-==Behaviour and life history==
-===Social structure===
-
-[[File:Bracken Bat Cave evening of 17 June 2017.ogv|thumb|right|[[Bracken Bat Cave]], home to twenty million Mexican free-tailed bats]]
-
-Some bats lead solitary lives, while others live in colonies of more than a million.{{sfn|Fenton|2001|pages=95–107}} For instance, the [[Mexican free-tailed bat]] fly for more than one thousand miles to the {{Convert|100|ft|m|adj=on}} wide cave known as [[Bracken Cave]] every March to October which plays home to an astonishing twenty million of the species,<ref>{{Cite web|title=How Many Species of Bats Are There? |url=https://www.worldatlas.com/articles/bat-species.html |access-date=21 September 2020 |website=WorldAtlas|date=14 March 2018 }}</ref> whereas a [[mouse-eared bat]] lives an almost completely solitary life.<ref>{{cite news |last=Barkham |first=Patrick |date=12 June 2018 |title=The last bat: the mystery of Britain's most solitary animal |work=[[The Guardian]] |url=https://www.theguardian.com/news/2018/jun/12/the-last-bat-the-mystery-of-britains-most-solitary-animal |access-date=21 September 2020 |issn=0261-3077}}</ref> Living in large colonies lessens the risk to an individual of predation.<ref name="MacDonald"/> Temperate bat species may [[Swarm behaviour|swarm]] at hibernation sites as autumn approaches. This may serve to introduce young to hibernation sites, signal reproduction in adults and allow adults to breed with those from other groups.{{sfn|Fenton|Simmons|2015|pages=188–189}}
-
-Several species have a [[fission–fusion society|fission-fusion social structure]], where large numbers of bats congregate in one roosting area, along with breaking up and mixing of subgroups. Within these societies, bats are able to maintain long-term relationships.<ref>{{cite journal |author1=Kerth, G. |author2=Perony, N. |author3=Schweitzer, F. |year=2011 |title=Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups |journal=Proceedings of the Royal Society B: Biological Sciences |volume=278 |issue=1719 |pages=2761–2767 |doi=10.1098/rspb.2010.2718|pmid=21307051 |pmc=3145188 }}</ref> Some of these relationships consist of [[matrilineal]]ly related females and their dependent offspring.<ref>{{cite journal |author1=Fornůsková, A |author2=Petit, E. J. |author3=Bartonička, T. |author4=Kaňuch, P. |author5=Butet, A. |author6=Řehák, Z. |author7=Bryja, J. |year=2014 |title=Strong matrilineal structure in common pipistrelle bats (''Pipistrellus pipistrellus'') is associated with variability in echolocation calls |journal=Biological Journal of the Linnean Society |volume=113 |issue=4 |pages=1115–1125 |doi=10.1111/bij.12381|doi-access=free }}</ref> Food sharing and [[mutual grooming]] may occur in certain species, such as the common vampire bat (''Desmodus rotundus''), and these strengthen social bonds.<ref name="Carter & Wilkinson 2013">{{cite journal |author1=Carter, G. G. |author2=Wilkinson, G. S. D. |year=2013 |title=Does food sharing in vampire bats demonstrate reciprocity? |journal=Communicative & Integrative Biology |volume=6|issue=6 |pmc=3913674 |pmid=24505498 |doi=10.4161/cib.25783 |pages=e25783}}</ref><ref name="Wilkinson 1986">{{cite journal |author=Wilkinson, G. S. |year=1986 |title=Social Grooming in the Common Vampire Bat, ''Desmodus rotundus'' |url=http://www.life.umd.edu/faculty/wilkinson/Wilk_AB86.pdf |journal=Anim. Behav. |volume=34 |issue=6 |pages=1880–1889 |doi=10.1016/s0003-3472(86)80274-3|citeseerx=10.1.1.539.5104 |s2cid=11214563}}</ref> Homosexual fellatio has been observed in the Bonin Flying Fox ''Pteropus pselaphon''<ref>{{Cite journal |last=Sugita |first=Norimasa |date=2016 |title=Homosexual fellatio: erect penis licking between male Bonin Flying Foxes Pteropus pselaphon |journal=PLOS ONE |volume=11 |issue=11 |pages=e0166024|doi=10.1371/journal.pone.0166024 |doi-access=free |pmid=27824953 }}</ref> and the Indian Flying Fox ''Pteropus medius'',<ref>{{Cite journal |last1=Sundar |first1=K. S. Gopi |last2=Kittur |first2=Swati |date=2020 |title=An observation of homosexual fellatio in the Indian Flying Fox Pteropus medius (Temminck, 1825) (Mammalia: Chiroptera: Pteropodidae) |journal=Journal of Threatened Taxa |volume=12 |issue=8 |pages=15945–15946|doi=10.11609/jott.5893.12.8.15945-15946 |doi-access=free }}</ref> though the function and purpose of this behaviour is not clear.
-
-===Communication===
-
-[[File:Journal.pone.0006746.g001.png|thumb|left|Acoustics of the songs of [[Mexican free-tailed bat]]s<ref name="Bohn"/>]]
-
-Bats are among the most vocal of mammals and produce calls to attract mates, find roost partners and defend resources. These calls are typically low-frequency and can travel long distances.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|pages=190–194}} Mexican free-tailed bats are one of the few species to "sing" like birds. Males sing to attract females. Songs have three phrases: chirps, trills and buzzes, the former having "A" and "B" syllables. Bat songs are highly stereotypical but with variation in syllable number, phrase order, and phrase repetitions between individuals.<ref name="Bohn">{{cite journal |last1=Bohn|first1=K. M.|first2=Barbara|last2=Schmidt-French|first3=Christine|last3=Schwartz|first4=Michael|last4=Smotherman|first5=George D.|last5=Pollak|year=2009|title=Versatility and Stereotypy of Free-Tailed Bat Songs |journal=PLOS ONE|volume=4 |issue=8 |page=e6746 |doi=10.1371/journal.pone.0006746 |bibcode=2009PLoSO...4.6746B|pmc=2727915 |pmid=19707550|doi-access=free}}</ref> Among [[greater spear-nosed bat]]s (''Phyllostomus hastatus''), females produce loud, broadband calls among their roost mates to form group cohesion. Calls differ between roosting groups and may arise from vocal learning.<ref>{{cite journal |author=Boughman, J. W. |year=1998 |title=Vocal learning by greater spear-nosed bats|journal=Proceedings of the Royal Society B: Biological Sciences |volume=265 |issue=1392 |pages=227–233 |doi=10.1098/rspb.1998.0286|pmid=9493408 |pmc=1688873 }}</ref>
-
-In a study on captive Egyptian fruit bats, 70% of the directed calls could be identified by the researchers as to which individual bat made it, and 60% could be categorised into four contexts: squabbling over food, jostling over position in their sleeping cluster, protesting over mating attempts and arguing when perched in close proximity to each other. The animals made slightly different sounds when communicating with different individual bats, especially those of the opposite sex.<ref>{{cite journal |last1=Prat |first1=Y. |last2=Taub |first2=M. |last3=Yovel |first3=Y. |title=Everyday bat vocalizations contain information about emitter, addressee, context, and behavior |journal=Scientific Reports |date=22 December 2016 |volume=6 |pages=39419 |doi=10.1038/srep39419 |pmid=28005079 |pmc=5178335 |bibcode=2016NatSR...639419P }}</ref> In the highly [[sexual dimorphism|sexually dimorphic]] [[hammer-headed bat]] (''Hypsignathus monstrosus''), males produce deep, resonating, monotonous calls to attract females. Bats in flight make vocal signals for traffic control. Greater bulldog bats honk when on a collision course with each other.{{sfn|Fenton|Simmons|2015|pages=190–194}}
-
-Bats also communicate by other means. Male [[little yellow-shouldered bat]]s (''Sturnira lilium'') have shoulder glands that produce a spicy odour during the breeding season. Like many other species, they have hair specialised for retaining and dispersing secretions. Such hair forms a conspicuous collar around the necks of the some Old World megabat males. Male [[greater sac-winged bat]]s (''Saccopteryx bilineata'') have sacs in their wings in which they mix body secretions like saliva and urine to create a perfume that they sprinkle on roost sites, a behaviour known as "salting". Salting may be accompanied by singing.{{sfn|Fenton|Simmons|2015|pages=190–194}}
-
-===Reproduction and life cycle===
-
-[[File:Desmo-kolonie-baum.tif|thumb|left|Group of polygynous vampire bats]]
-
-Most bat species are [[Polygyny in animals|polygynous]], where males mate with multiple females. Male pipistrelle, noctule and vampire bats may claim and defend resources that attract females, such as roost sites, and mate with those females. Males unable to claim a site are forced to live on the periphery where they have less reproductive success.<ref name="mating">{{cite journal |author=Wilkinson, G. S. |year=1985 |title=The Social Organization of the Common Vampire Bat II: Mating system, genetic structure, and relatedness |journal=Behavioral Ecology and Sociobiology |volume=17 |issue=2 |pages=123–134 |url=http://www.life.umd.edu/faculty/wilkinson/Wilk_BES85b.pdf |doi=10.1007/BF00299244|s2cid=12460893 }}</ref><ref name="MacDonald"/> [[Promiscuity#Other animals|Promiscuity]], where both sexes mate with multiple partners, exists in species like the Mexican free-tailed bat and the little brown bat.<ref>{{cite journal |author1=Thomas, D. W. |author2=Fenton, M. R. |author3=Barclay, R. M. R. |year=1979 |title=Social Behavior of the Little Brown Bat, ''Myotis lucifugus'': I. Mating Behavior |journal=Behavioral Ecology and Sociobiology |volume=6 |issue=2 |pages=129–136 |jstor=4599268 |doi=10.1007/bf00292559|s2cid=27019675 }}</ref><ref>{{cite journal |doi=10.1644/BME-004 |title=The Mating System of ''Tadarida brasiliensis'' (Chiroptera: Molossidae) in a Large Highway Bridge Colony |journal=Journal of Mammalogy |volume=85|pages=113–119 |year=2004 |last1=Keeley |first1=A. T. H. |last2=Keeley |first2=B. W.|doi-access=free }}</ref> There appears to be bias towards certain males among females in these bats.<ref name="MacDonald"/> In a few species, such as the yellow-winged bat and spectral bat, adult males and females form [[Monogamy in animals|monogamous]] pairs.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|page=197}} [[Lek mating]], where males aggregate and compete for female choice through display, is rare in bats<ref>{{cite journal |author1=Toth, C. A. |author2=Parsons, S. |year=2013 |title=Is lek breeding rare in bats? |journal=Journal of Zoology |volume=291 |issue=1 |pages=3–11 |doi=10.1111/jzo.12069}}</ref> but occurs in the hammerheaded bat.<ref>{{cite journal |last=Bradbury |first=J. W. |year=1977 |title=Lek Mating Behavior in the Hammer-headed Bat |journal=Zeitschrift für Tierpsychologie |volume=45 |issue=3 |pages=225–255 |doi=10.1111/j.1439-0310.1977.tb02120.x |url=https://zenodo.org/record/8204647 }}</ref>
-
-For temperate living bats, mating takes place in late summer and early autumn.{{sfn|Altringham|2011|page=105}} Tropical bats may mate during the dry season.<ref>{{cite journal |author1=Mares, M. A. |author2=Wilson, D. E. |year=1971 |title=Bat Reproduction during the Costa Rican Dry Season |journal=BioScience |volume=21 |issue=10 |pages=471–472+477|doi=10.2307/1295789 |jstor=1295789}}</ref> After copulation, the male may leave behind a [[mating plug]] to block the sperm of other males and thus ensure his paternity.<ref name="CrichtonKrutzsch2000">{{cite book|author1=Elizabeth G. Crichton|author2=Philip H. Krutzsch|title=Reproductive Biology of Bats|url=https://books.google.com/books?id=f1aNgZwGsYoC|date=12 June 2000|publisher=Academic Press|isbn=978-0-08-054053-5}}</ref> In hibernating species, males are known to mate with females in torpor.<ref name="MacDonald"/> Female bats use a variety of strategies to control the timing of pregnancy and the birth of young, to make delivery coincide with maximum food ability and other ecological factors. Females of some species have delayed fertilisation, in which sperm is stored in the reproductive tract for several months after mating. Mating occurs in late summer to early autumn but fertilisation does not occur until the following late winter to early spring. Other species exhibit [[delayed implantation]], in which the egg is fertilised after mating, but remains free in the reproductive tract until external conditions become favourable for giving birth and caring for the offspring.{{sfn|Altringham|2011|page=114–119}} In another strategy, fertilisation and implantation both occur, but development of the foetus is delayed until good conditions prevail. During the delayed development the mother keeps the fertilised egg alive with nutrients. This process can go on for a long period, because of the advanced gas exchange system.<ref>{{cite book |title=Biology of Bats |url=https://books.google.com/books?id=Gtp4yWnPD9YC&q=Biology+Bats |author1=Neuweiler, G. |publisher=Oxford University Press |year=2000 |page=247 |isbn=978-0-19-509950-8}}</ref>
-[[File:Pipistrellus pipistrellus baby.jpg|thumb|right|Newborn common pipistrelle, ''Pipistrellus pipistrellus'']]
-
-For temperate living bats, births typically take place in May or June in the northern hemisphere; births in the southern hemisphere occur in November and December. Tropical species give birth at the beginning of the rainy season.<ref>{{cite book |author=Fenton, M. B. |year=1983 |title=Just Bats |publisher=University of Toronto Press |isbn=978-1442655386 |url=https://books.google.com/books?id=cueMBgAAQBAJ&q=bat+breeding+seasons&pg=PT100}}</ref> In most bat species, females carry and give birth to a single pup per litter.<ref>{{cite book |author1=Kunz, T. H. |author2=Fenton, B. |year=2005 |title=Bat Ecology |publisher=University of Chicago Press |page=216 |isbn=978-0226462073}}</ref> At birth, a bat pup can be up to 40 percent of the mother's weight,<ref name="MacDonald"/> and the pelvic girdle of the female can expand during birth as the two-halves are connected by a flexible ligament.{{sfn|Fenton|2001|page=166}} Females typically give birth in a head-up or horizontal position, using gravity to make birthing easier. The young emerges rear-first, possibly to prevent the wings from getting tangled, and the female cradles it in her wing and tail membranes. In many species, females give birth and raise their young in [[Maternity colony (bats)|maternity colonies]] and may assist each other in birthing.<ref>{{cite book |author1=Nagorsen, D. W. |author2=Brigham, R. M. |title=Bats of British Columbia |publisher=UBC Press |page=17 |isbn=978-0774804820|year=1993 }}</ref>{{sfn|Altringham|2011|page=119}}{{sfn|Fenton|2001|page=166}}
-
-Most of the care for a young bat comes from the mother. In monogamous species, the father plays a role. Allo-suckling, where a female suckles another mother's young, occurs in several species. This may serve to increase colony size in species where females return to their natal colony to breed.<ref name="MacDonald"/> A young bat's ability to fly coincides with the development of an adult body and forelimb length. For the little brown bat, this occurs about eighteen days after birth. Weaning of young for most species takes place in under eighty days. The common vampire bat nurses its offspring beyond that and young vampire bats achieve independence later in life than other species. This is probably due to the species' blood-based diet, which is difficult to obtain on a nightly basis.{{sfn|Fenton|Simmons|2015|page=171}}
-
-===Life expectancy===
-[[File:The Bat Scientists Lauri Lutsar.jpg|thumb|right|The bat scientist Lauri Lutsar is checking the age of the bat he is holding as part of a national monitoring program in [[Estonia]]]]
-The maximum lifespan of bats is three-and-a-half times longer than other mammals of similar size. Six species have been recorded to live over thirty years in the wild: the brown long-eared bat (''Plecotus auritus''), the little brown bat (''Myotis lucifugus''), the [[Siberian bat]] (''Myotis sibiricus''), the [[lesser mouse-eared bat]] (''Myotis blythii'') the [[greater horseshoe bat]] (''Rhinolophus ferrumequinum''), and the [[Indian flying fox]] (''Pteropus giganteus'').<ref>{{cite book |title= Walker's Mammals of the World |first= Ronald M. |last=Nowak |edition= illustrated |publisher= JHU Press |year= 1999 |isbn= 978-0801857898 |page= 269}}</ref> One hypothesis consistent with the [[rate-of-living theory]] links this to the fact that they slow down their [[metabolic rate]] while [[hibernating]]; bats that hibernate, on average, have a longer lifespan than bats that do not.<ref>{{cite journal |first1=C. |last1=Turbill |first2=C. |last2=Bieber |first3=T. |last3=Ruf |year=2011 |title=Hibernation is associated with increased survival and the evolution of slow life histories among mammals |journal=Proceedings of the Royal Society B |volume=278 |issue=1723 |pages=3355–3363 |doi=10.1098/rspb.2011.0190 |pmc=3177628 |pmid=21450735}}</ref><ref name=wilkinson2002/>
-
-Another hypothesis is that flying has reduced their mortality rate, which would also be true for birds and gliding mammals. Bat species that give birth to multiple pups generally have a shorter lifespan than species that give birth to only a single pup. Cave-roosting species may have a longer lifespan than non-roosting species because of the decreased predation in caves. A male Siberian bat was recaptured in the wild after 41 years, making it the oldest known bat.<ref name=wilkinson2002>{{cite journal |url =http://www.life.umd.edu/faculty/wilkinson/Wilk_South02.pdf |title=Life history, ecology and longevity in bats |first1=G. S. |last1=Wilkinson |first2=J. M. |last2=South |journal=Aging Cell |year=2002 |volume=1 |issue=2 |pages=124–131 |doi=10.1046/j.1474-9728.2002.00020.x |pmid=12882342|s2cid=855367 }}</ref><ref>{{cite journal |first1=Y. |last1=Gager |first2=O. |last2=Gimenez |first3=M. T. |last3=O'Mara |first4=D. K. N. |last4=Dechmann |year=2016 |title=Group size, survival and surprisingly short lifespan in socially foraging bats |journal=BMC Ecology |volume=16 |issue=2 |pages=2 |doi=10.1186/s12898-016-0056-1 |pmc=4714502 |pmid=26767616 |doi-access=free |bibcode=2016BMCE...16....2G }}</ref>
-
-==Interactions with humans==
-
-{{Main|Human uses of bats}}
-
-===Conservation<!--linked from [[bat conservation]]-->===
-
-{{See also|List of bats by population}}
-{{Pie chart
- | caption=Conservation statuses of bats as of 2020 according to the IUCN (1,314 species in total)<ref>{{cite web|url=https://www.iucnredlist.org/search/stats| title=Taxonomy: Chiroptera| website=IUCN Red List of Threatened Species| access-date=14 December 2020}}</ref>
- |other =
- |value1 = 1.6
- |label1 = Critically endangered
- |value2 = 6.3
- |label2 = Endangered
- |value3 = 8.3
- |label3 = Vulnerable
- |value4 = 6.7
- |label4 = Near-threatened
- |value5 = 58.0
- |label5 = Least concern
- |value6 = 18.4
- |label6 = Data deficient
- |value7 = 0.7
- |label7 = Extinct}}
-
-Groups such as the [[Bat Conservation International]]<ref>{{cite web |title=Mission & Vision |url=http://www.batcon.org/about-us/about-bci/mission-vision |publisher=Bat Conservation International |access-date=16 November 2017}}</ref> aim to increase awareness of bats' ecological roles and the environmental threats they face. In the United Kingdom, all bats are protected under the [[Wildlife and Countryside Act]]s, and disturbing a bat or its roost can be punished with a heavy fine.<ref>{{cite web |title=Bats and the Law |url=http://www.bats.org.uk/pages/bats_and_the_law.html |publisher=Bat Conservation Trust |access-date=16 November 2017}}</ref>
-In [[Sarawak]], Malaysia, "all bats"<ref name=WPO1998/> are protected under the [[Malaysian Wildlife Law|Wildlife Protection Ordinance 1998]],<ref name=WPO1998>{{cite web |title=Wildlife Protection Ordinance 1998 |url=http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf |publisher=FAO |access-date=16 November 2017 |archive-date=17 November 2017 |archive-url=https://web.archive.org/web/20171117002846/http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf |url-status=dead }}</ref> but species such as the [[hairless bat]] (''Cheiromeles torquatus'') are still eaten by the local communities.<ref>{{cite journal |author1=Leong, T. M. |author2=Teo, S. C. |author3=Lim, K. K. P. |year=2009 |title=The Naked Bulldog Bat, ''Cheiromeles torquatus'' in Singapore – past and present records, with highlights on its unique morphology (Microchiroptera: Molossidae) |journal=Nature in Singapore |volume=2 |pages=215–230}}</ref> Humans have caused the extinction of several species of bat in modern history, the most recent being the [[Christmas Island pipistrelle]] (''Pipistrellus murrayi''), which was declared extinct in 2009.<ref>{{cite book|author1=Ceballos, G. |author2=Ehrlich, A. H. |author3=Ehrlich, P. R. |year=2015|title=The Annihilation of Nature: Human Extinction of Birds and Mammals|publisher=Johns Hopkins University Press|pages=75–76|isbn=978-1421417189}}</ref>
-
-Many people put up bat houses to attract bats.<ref>{{cite web |title=All about bats |url=http://www.batcon.org/ |publisher=Bat Conservation International |date=24 January 2002 |url-status=dead |archive-url=https://web.archive.org/web/20130623184422/http://batcon.org/ |archive-date=23 June 2013}}</ref> The 1991 [[University of Florida]] bat house is the largest occupied artificial roost in the world, with around 400,000 residents.<ref>{{Cite web |url=https://www.flmnh.ufl.edu/index.php/bats/home/ |title=Welcome to the World's Largest Occupied Bat Houses |publisher=Florida Museum of Natural History |access-date=18 December 2017}}</ref> In Britain, thickwalled and partly underground [[British hardened field defences of World War II|World War II pillboxes]] have been converted to make roosts for bats,<ref>{{cite web |url=http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf |title=Protecting and managing underground sites for bats, see section 6.4. |publisher=Eurobats |access-date=18 May 2006 |url-status=dead |archive-url=https://web.archive.org/web/20120512092008/http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf |archive-date=12 May 2012}}</ref><ref>{{cite news |url=http://news.bbc.co.uk/1/hi/england/4885642.stm |title=Pillbox converted to bat retreat |publisher=BBC |access-date=18 May 2006 |date=6 April 2006}}</ref> and purpose-built bat houses are occasionally built to mitigate damage to habitat from road or other developments.<ref>{{Cite web |url=http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/7330846.stm |title=Bypass wings it with bat bridges |date=4 April 2008 |publisher=BBC |access-date=21 August 2016}}</ref><ref>{{Cite web |url=http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/8320610.stm |title=Bat bridges cost £27k per animal |date=22 October 2009 |publisher=BBC |access-date=21 August 2016}}</ref> [[Cave gate]]s are sometimes installed to limit human entry into caves with sensitive or endangered bat species. The gates are designed not to limit the airflow, and thus to maintain the cave's micro-ecosystem.<ref name="AGENCY">{{cite web |url=http://www.batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf |title=Agency Guide to Cave and Mine Gates 2009 |website=Batcon.org |access-date=1 November 2017 |archive-date=20 October 2012 |archive-url=https://web.archive.org/web/20121020143210/http://batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf |url-status=dead }}</ref> Of the 47 species of bats found in the United States, 35 are known to use human structures, including buildings and bridges. Fourteen species use bat houses.<ref>{{cite book |last1=Pfeiffer |first1=Martin J. |title=Bats, People, and Buildings: Issues and Opportunities |date=February 2019 |publisher=United States Department of Agriculture, Forest Service, Forest Products Laboratory |location=Madison, WI |url=https://purl.fdlp.gov/GPO/gpo117356 |access-date=26 March 2019}}</ref>
-
-[[Bat as food|Bats are eaten]] in countries across Africa, Asia and the Pacific Rim. In some cases, such as in Guam, flying foxes have become endangered through being hunted for food.<ref>{{cite book |last1=Hopkins |first1=J. |last2=Bourdain |first2=A. |title=Extreme Cuisine: The Weird & Wonderful Foods that People Eat |url=https://books.google.com/books?id=DJDKaxEEfYgC&pg=PA51 |year=2004 |publisher=Periplus |isbn=978-0-7946-0255-0 |page=51}}</ref> There is evidence that suggests that [[wind turbine]]s might create sufficient [[barotrauma]] (pressure damage) to kill bats.<ref name="BaerwaldD'Amours2008">{{cite journal |last1=Baerwald |first1=E. F. |last2=D'Amours |first2=G. H. |last3=Klug |first3=B. J. |last4=Barclay |first4=R. M. R. |title=Barotrauma is a significant cause of bat fatalities at wind turbines |journal=Current Biology |volume=18 |issue=16 |year=2008 |pages=R695–R696 |doi=10.1016/j.cub.2008.06.029 |pmid=18727900|s2cid=17019562 |doi-access=free }}</ref> Bats have typical [[Lung#Mammalian lungs|mammalian lungs]], which are thought to be more sensitive to sudden air pressure changes than [[Avian lungs|the lungs of birds]], making them more liable to fatal rupture.<ref name="nww">{{Cite journal|url=http://www.wind-watch.org/news/2008/09/23/bc-study-to-help-bats-survive-wind-farms/ |title=B.C. study to help bats survive wind farms |journal=National Wind Watch |date=23 September 2008 |access-date=19 April 2015}}</ref><ref>"[https://www.newscientist.com/article/dn11834 Bats take a battering at wind farms]", ''[[New Scientist]]'', 12 May 2007</ref><ref>{{cite web |url=http://vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf |publisher=Bat Conservation International |title=Caution Regarding Placement of Wind Turbines on Wooded Ridge Tops |date=4 January 2005 |access-date=21 April 2006 |archive-url=https://web.archive.org/web/20060523210423/http://www.vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf |archive-date=23 May 2006 |url-status=dead}}</ref><ref>{{cite web |url=http://batcon.org/wind/BWEC2004finalreport.pdf |publisher=Bat Conservation International |title=Relationships between Bats and Wind Turbines in Pennsylvania and West Virginia: An Assessment of Fatality Search Protocols, Patterns of Fatality, and Behavioral Interactions with Wind Turbines |access-date=21 April 2006 |date=12 June 2005 |first=E. B. |last=Arnett |author2=Erickson, W. P. |author3=Kerns, J. |author4=Horn, J. |archive-url=https://web.archive.org/web/20060210183113/http://batcon.org/wind/BWEC2004finalreport.pdf |archive-date=10 February 2006}}</ref><ref>{{cite journal |last=Baerwald |first=E. F. |author2=D'Amours, G.H. |author3=Klug, Brandon J. |author4=Barclay, R. M. R. |date=26 August 2008 |title=Barotrauma is a significant cause of bat fatalities at wind turbines |journal=[[Current Biology]] |volume=18 |issue=16 |pages=R695–R696 |doi=10.1016/j.cub.2008.06.029 |oclc=252616082 |pmid=18727900|s2cid=17019562 |doi-access=free }}<!-- this study does not appear to include any measurements or calculations of pressure in the vicinity of the turbine blades, which would seem an obvious subject to investigate. --></ref> Bats may be attracted to turbines, perhaps seeking roosts, increasing the death rate.<ref name="nww"/> Acoustic deterrents may help to reduce bat mortality at wind farms.<ref>{{cite book |last1=Johnson |first1=J. B. |first2=W. M. |last2=Ford |first3=J. L. |last3=Rodrigue |first4=J. W. |last4=Edwards |year=2012 |url=https://purl.fdlp.gov/GPO/gpo36973 |title=Effects of Acoustic Deterrents on Foraging Bats |publisher=U.S. Department of Agriculture, U.S. Forest Service, Northern Research Station |pages=1–5}}</ref>
-
-The [[diagnosis]] and contribution of barotrauma to bat deaths near wind turbine blades have been disputed by other research comparing dead bats found near wind turbines with bats killed by impact with buildings in areas with no turbines.<ref name="Rollins et al.">{{cite journal |last1=Rollins |first1=K.E. |title=A Forensic Investigation Into the Etiology of Bat Mortality at a Wind Farm: Barotrauma or Traumatic Injury? |journal=Veterinary Pathology |volume=49 |issue=2 |date = January 2012 |last2=Meyerholz |first2=D. |last3=Johnson |first3=D. |last4=Capparella |first4=A. |last5=Loew |first5=S. |pages=362–371 |doi=10.1177/0300985812436745 |pmid=22291071 |s2cid=11189743 |doi-access= }}</ref>
-
-===Cultural significance<!--A link to here is in: Animal#In human culture.-->===
-
-[[File:Francisco José de Goya y Lucientes - The sleep of reason produces monsters (No. 43), from Los Caprichos - Google Art Project.jpg|thumb|upright|[[Francisco de Goya]], ''The Sleep of Reason Produces Monsters'', 1797]]
-
-Since bats are mammals, yet can fly, they are considered to be [[liminal being]]s in various traditions.<ref>{{cite journal |last=McCracken |first=G. F. |title=Folklore and the Origin of Bats |journal=BATS Magazine |year=1993 |volume=11 |series=Bats in Folklore |issue=4}}</ref> In many cultures, including in Europe, bats are associated with darkness, death, witchcraft, and malevolence.<ref name="symbols">{{cite book |author=Chwalkowski, F. |year=2016 |title=Symbols in Arts, Religion and Culture: The Soul of Nature |publisher=Cambridge Scholars Publishing |page=523 |isbn=978-1443857284}}</ref> Among [[Native Americans in the United States|Native Americans]] such as the [[Creek (people)|Creek]], [[Cherokee]] and [[Apache Tribe|Apache]], the bat is identified as a [[trickster]].<ref>{{cite book|author=Chwalkowski, Farrin|year=2016|title=Symbols in Arts, Religion and Culture: The Soul of Nature|publisher=Cambridge Scholars Publishing|page=523|isbn=978-1443857284}}</ref> In Tanzania, a winged batlike creature known as [[Popobawa]] is believed to be a shapeshifting [[evil spirit]] that assaults and [[sodomises]] its victims.<ref>{{cite web |last=Saleh |first=A. |date=19 July 2001 |title=Sex-mad 'ghost' scares Zanzibaris |url=http://news.bbc.co.uk/1/hi/world/africa/1446733.stm |work=BBC News |access-date=29 December 2014}}</ref> In [[Aztec]] [[mythology]], bats symbolised the land of the dead, destruction, and decay.<ref>{{cite web |url=http://www.aztec-history.net/aztec_symbols |title=Aztec Symbols |publisher=Aztec-history.net |access-date=24 June 2013}}</ref><ref name=ReadGonzalez>{{cite book |author1=Read, K. A. |author2=Gonzalez, J. J. |year=2000 |title=Mesoamerican Mythology |publisher=Oxford University Press |pages=[https://archive.org/details/mesoamericanmyth0000read/page/132 132–134] |isbn=978-0195149098 |url=https://archive.org/details/mesoamericanmyth0000read/page/132 }}</ref><ref>{{cite web |url=http://www.oaxacanwoodcarving.com/mythnatr.html |title=Artists Inspired by Oaxaca Folklore Myths and Legends |publisher=Oaxacanwoodcarving.com |access-date=24 June 2013 |url-status=dead |archive-url=https://web.archive.org/web/20131110172458/http://www.oaxacanwoodcarving.com/mythnatr.html |archive-date=10 November 2013}}</ref><!--<ref>Berrin, Katherine & Larco Museum. ''The Spirit of Ancient Peru:Treasures from the [[Larco Museum|Museo Arqueológico Rafael Larco Herrera]].'' New York: [[Thames and Hudson]], 1997.</ref>--> An East Nigerian tale tells that the bat developed its nocturnal habits after causing the death of his partner, the bush-rat, and now hides by day to avoid arrest.<ref name=Arnott1962>{{cite book |author=Arnott, K. |year=1962 |title=African Myths and Legends |publisher=Oxford University Press |pages=150–152}}</ref>
-
-More positive depictions of bats exist in some cultures. In China, bats have been associated with happiness, joy and good fortune. Five bats are used to symbolise the "Five Blessings": longevity, wealth, health, love of virtue and peaceful death.<ref>{{cite web|title=Chinese symbols|publisher=British Museum|access-date=10 September 2017|url=https://www.britishmuseum.org/pdf/Chinese_symbols_1109.pdf}}</ref> The bat is sacred in [[Tonga]] and is often considered the physical manifestation of a separable [[Soul (spirit)|soul]].<ref>{{cite web |author=Grant, G. S. |url=http://www.batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757 |title=Kingdom of Tonga: Safe Haven for Flying Foxes |publisher=Batcon.org |access-date=24 June 2013 |archive-date=12 August 2014 |archive-url=https://web.archive.org/web/20140812231111/http://batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757 |url-status=dead }}</ref> In the [[Zapotec civilisation]] of Mesoamerica, the bat god presided over corn and fertility.<ref>{{cite web|last1=Cartwright |first1=M. |title=Zapotec Civilization |url=https://www.worldhistory.org/Zapotec_Civilization/ |publisher=[[World History Encyclopedia]] |access-date=2 December 2017 |date=28 October 2013}}</ref>
-[[File:Bat god, Zapotec, Period III-A - Mesoamerican objects in the American Museum of Natural History - DSC06023.JPG|thumb|upright|left|[[Zapotec civilization|Zapotec]] bat god, [[Oaxaca]], 350–500 CE]]
-
-The [[Weird Sisters]] in Shakespeare's ''[[Macbeth]]'' used the fur of a bat in their brew.<ref name="deVries76">{{cite book |last=de Vries |first=A. |title=Dictionary of Symbols and Imagery |year=1976 |page=[https://archive.org/details/dictionaryofsymb0000vrie/page/36 36] |publisher=North-Holland |location=Amsterdam |isbn=978-0-7204-8021-4 |url=https://archive.org/details/dictionaryofsymb0000vrie/page/36 }}</ref> In [[Western culture]], the bat is often a symbol of the night and its foreboding nature. The bat is a primary animal associated with fictional characters of the night, both villainous [[vampire]]s, such as [[Count Dracula]] and before him ''[[Varney the Vampire]]'',<ref>{{cite journal |last1=Miller |first1=Elizabeth |title=Bats, Vampires & Dracula |journal=Newsletter of the Florida Bat Conservation Centre |date=1998 |issue=Fall 1998 |url=http://www.ucs.mun.ca/~emiller/bats_vamp_drac.html |access-date=19 December 2017}}</ref> and heroes, such as the [[DC Comics]] character [[Batman]].<ref name=Fleisher>{{cite book |author=Fleisher, M. L. |title=The Encyclopedia of Comic Book Heroes Volume 1 Batman |publisher=Collier Books |year=1976 |isbn=978-0-02-080090-3 |page=31}}</ref> [[Kenneth Oppel]]'s [[Silverwing (series)|Silverwing novels]] narrate the adventures of a young bat,<ref>{{cite web |title=Silverwing by Kenneth Oppel |url=https://www.kirkusreviews.com/book-reviews/kenneth-oppel/silverwing/ |publisher=Kirkus Reviews |access-date=25 September 2017|year=1997}}</ref> based on the [[silver-haired bat]] of North America.<ref>{{cite web |last1=Oppel |first1=K. |title=The Characters: Shade |url=http://www.kennethoppel.ca/silverwing/shade.shtml |publisher=Kenneth Oppel |access-date=25 September 2017 |quote="Shade is based on a Silver-Haired Bat. I thought they were very dashing-looking creatures. I liked the fact this was a bat that lived in the same part of the world as me (eastern Canada). These are small creatures, with a wing span of a few inches. Their bodies are about the same size as mice. They're insectivores, which means they eat only insects." – K.O. |archive-url=https://web.archive.org/web/20170926043235/http://www.kennethoppel.ca/silverwing/shade.shtml |archive-date=26 September 2017 |url-status=dead}}</ref>
-
-The bat is sometimes used as a [[Bat (heraldry)|heraldic symbol]] in Spain and France, appearing in the coats of arms of the towns of [[Valencia]], [[Palma de Mallorca]], [[Fraga]], [[Albacete]], and [[Montchauvet, Yvelines|Montchauvet]].<ref name="cervantesvirtual.com">{{cite web |url=http://www.cervantesvirtual.com/FichaObra.html?Ref=23879&portal=33 |author=Tramoyeres Blasco, L. |title=Lo Rat Penat en el escudo de armas de Valencia |trans-title=The Rat Penat in the coat of arms of Valencia |language=es |access-date=14 November 2014}}</ref><ref>{{cite book |author=Alomar i Canyelles, A. I. |title=L'Estendard, la festa nacional més antiga d'Europa |trans-title=The Banner, the oldest national party in Europe|pages=xiii–xxi |location=Palma |year=1998}}</ref><ref name="ifc.dpz.es">{{cite journal |title=Estudio de los escudos recogidos en la orla de latabla de la magistratura |trans-title=Study of the shields collected in the border of the board of the judiciary |url=http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf |url-status=dead |archive-url=https://web.archive.org/web/20170910130155/http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf |archive-date=10 September 2017 |journal=Emblemata Revista Aragonesa de Emblematica |year=2005 |language=es |volume=6 |page=242}}</ref> Three US states have an official [[List of U.S. state bats|state bat]]. Texas and Oklahoma are represented by the Mexican free-tailed bat, while Virginia is represented by the [[Virginia big-eared bat]] (''Corynorhinus townsendii virginianus'').<ref>{{cite web|url=http://www.netstate.com/states/tables/state_bats.htm |title=Official state bats |access-date=13 February 2011 |publisher=Netstate |archive-url=https://web.archive.org/web/20101220083516/http://netstate.com/states/tables/state_bats.htm |archive-date=20 December 2010 |url-status=dead}}</ref>
-
-===Economics===
-
-Insectivorous bats in particular are especially helpful to farmers, as they control populations of agricultural pests and reduce the need to use [[pesticide]]s. It has been estimated that bats save the agricultural industry of the United States anywhere from [[USD|$]]3.7{{nbsp}}billion to $53{{nbsp}}billion per year in pesticides and damage to crops. This also prevents the overuse of pesticides, which can pollute the surrounding environment, and may lead to resistance in future generations of insects.<ref>{{cite journal |first1=Justin G. |last1=Boyles |first2=Paul M. |last2=Cryan |first3=Gary F. |last3=McCracken |first4=Thomas H. |last4=Kunz |year=2011 |title=Economic Importance of Bats in Agriculture |journal=Science |volume=332 |issue=6025 |pages=41–42 |doi=10.1126/science.1201366 |pmid=21454775|bibcode=2011Sci...332...41B |s2cid=34572622 }}</ref>
-
-Bat dung, a type of [[guano]], is rich in nitrates and is mined from caves for use as [[fertiliser]].<ref>{{cite book |last=Weaver |first=H. D. |title=Missouri Caves in History and Legend |url=https://archive.org/details/missouricavesinh00weav |url-access=registration |year=2008 |publisher=University of Missouri Press |isbn=978-0-8262-6645-3 |pages=[https://archive.org/details/missouricavesinh00weav/page/64 64]–69}}</ref> During the [[US Civil War]], [[saltpetre]] was collected from caves to make [[gunpowder]]. At the time, it was believed that the nitrate all came from the bat guano, but it is now known that most of it is produced by [[nitrifying bacteria]].<ref>{{cite journal |last1=Whisonant |first1=R. C. |title=Geology and History of Confederate Saltpeter Cave Operations in Western Virginia |journal=Virginia Minerals |year=2001 |volume=47 |issue=4 |pages=33–43 |url=https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf |access-date=24 September 2017 |archive-date=27 December 2016 |archive-url=https://web.archive.org/web/20161227063809/https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf |url-status=dead }}</ref>
-
-The [[Ann W. Richards Congress Avenue Bridge|Congress Avenue Bridge]] in [[Austin, Texas]], is the summer home to North America's largest urban bat colony, an estimated 1,500,000 Mexican free-tailed bats. About 100,000 tourists a year visit the bridge at twilight to watch the bats leave the roost.<ref>{{Cite web |author=Christensen, RaeAnn |url=http://www.fox7austin.com/news/local-news/165481229-story |title=Best time to see the bat colony emerge from Congress Bridge in Downtown Austin |publisher=Fox7 |access-date=21 August 2016 |archive-url=https://web.archive.org/web/20161019073438/http://www.fox7austin.com/news/local-news/165481229-story |archive-date=19 October 2016 |url-status=dead }}</ref>
-
-== See also ==
-* {{annotated link|Bat detector}}
-
-== Explanatory notes ==
-{{Notelist}}
-
-== References ==
-{{Reflist}}
-
-=== Sources ===
-* {{cite book |last=Altringham |first=J. D. |year=2011 |title=Bats: From Evolution to Conservation |publisher=Oxford University Press |isbn=978-0199207114 }}
-* {{cite book |last=Fenton |first=M. B. |year=2001 |title=Bats |publisher=Checkmark Books |isbn=978-0-8160-4358-3 }}
-* {{cite book |last1=Fenton |first1=M. B. |last2=Simmons |first2=N. B. |year=2015 |title=Bats: A World of Science and Mystery |publisher=University of Chicago Press |isbn=978-0226065120 }}
-
-== External links ==
-{{Commons category}}
-{{Wikibooks|Dichotomous Key|Chiroptera}}
-{{Wikispecies|Chiroptera}}
-* {{oweb|http://www.bats.org.uk/pages/about_bats.html}} of UK Bat Conservation Trust
-* [http://tolweb.org/tree?group=Chiroptera&contgroup=Eutheria Tree of Life]
-* [http://www.fladdermus.net/thesis.htm Microbat Vision] {{Webarchive|url=https://web.archive.org/web/20200129210527/http://www.fladdermus.net/thesis.htm |date=29 January 2020 }}
-* [http://www.hscott.net/the-dsp-behind-bat-echolocation/ Analyses of several kinds of bat echolocation]
-
-{{Mammals}}
-{{Taxonbar|from=Q28425}}
-{{Authority control}}
-
-[[Category:Bats| ]]
-[[Category:Animal flight]]
-[[Category:Animals that use echolocation]]
-[[Category:Articles containing video clips]]
-[[Category:Cave mammals]]
-[[Category:Extant Ypresian first appearances]]
-[[Category:Nocturnal animals]]
-[[Category:Taxa named by Johann Friedrich Blumenbach]]
+''' '''Bold text''''''
+BAT
' |
New page size (new_size ) | 26 |
Old page size (old_size ) | 171984 |
Size change in edit (edit_delta ) | -171958 |
Lines added in edit (added_lines ) | [
0 => '''' '''Bold text''''''',
1 => 'BAT'
] |
Lines removed in edit (removed_lines ) | [
0 => '{{Short description|Order of flying mammals}}',
1 => '{{About||the sporting equipment|Baseball bat|and|Cricket bat|and|Table tennis bat|other uses}}',
2 => '{{Redirect-multi|2|Bats|Chiroptera}}{{Use dmy dates|date=November 2020}}',
3 => '{{Featured article}}',
4 => '{{Use British English|date=November 2017}}',
5 => '{{Automatic taxobox',
6 => '| name = Bat',
7 => '| fossil_range = {{Fossil range|52|0|[[Eocene]]–[[Holocene|Present]]}}',
8 => '| image = <imagemap>',
9 => 'File:Wikipedia-Bats-001-v01.jpg|300px',
10 => 'rect 0 0 820 510 [[Common vampire bat]]',
11 => 'rect 0 510 820 950 [[Greater horseshoe bat]]',
12 => 'rect 0 950 820 1560 [[Greater short-nosed fruit bat]]',
13 => 'rect 1520 0 820 510 [[Egyptian fruit bat]]',
14 => 'rect 1520 510 820 950 [[Mexican free-tailed bat]]',
15 => 'rect 1520 950 820 1560 [[Greater mouse-eared bat]]',
16 => '</imagemap>',
17 => '| display_parents = 2',
18 => '| taxon = Chiroptera',
19 => '| authority = [[Johann Friedrich Blumenbach|Blumenbach]], 1779',
20 => '| subdivision_ranks = Suborders',
21 => '| subdivision = (traditional):',
22 => '* [[Megachiroptera]]',
23 => '* [[Microchiroptera]]',
24 => '(present):',
25 => '* [[Yinpterochiroptera]]',
26 => '* [[Yangochiroptera]]',
27 => '| range_map = Bat range.png',
28 => '| range_map_caption = Worldwide distribution of bat species',
29 => '}}',
30 => '',
31 => ''''Bats''' are flying [[mammal]]s of the [[Order (biology)|order]] '''Chiroptera''' ({{IPAc-en|k|aɪ|ˈ|ɹ|ɒ|p|t|ə|ɹ|ə}}).{{efn|from the {{lang-grc|χείρ}}{{snd}}''cheir'', "hand" and πτερόν{{snd}}''pteron'', "wing".<ref name=EB1911>{{cite EB1911 |short=1<!--suppress ed. forename--> |wstitle=Chiroptera |volume=6 |pages=239–247}}</ref>}} With their forelimbs adapted as [[wing]]s, they are the only mammals capable of true and sustained [[flight]]. Bats are more agile in flight than most birds, [[Bat flight|flying]] with their very long spread-out digits covered with a thin membrane or [[patagium]]. The smallest bat, and arguably the [[Smallest organisms|smallest extant mammal]], is [[Kitti's hog-nosed bat]], which is {{convert|29|-|34|mm|in|frac=8|abbr=off}} in length, {{convert|150|mm|in|frac=2|abbr=on}} across the wings and {{convert|2|-|2.6|g|abbr=on|frac=32}} in mass. The largest bats are the [[flying foxes]], with the [[giant golden-crowned flying fox]] (''Acerodon jubatus'') reaching a weight of {{convert|1.6|kg|lb|frac=4|abbr=on}} and having a wingspan of {{convert|1.7|m|ftin|abbr=on|0}}.',
32 => '',
33 => 'The second largest order of mammals after [[rodents]], bats comprise about 20% of all classified mammal species worldwide, with over 1,400 species. These were traditionally divided into two suborders: the largely fruit-eating [[megabat]]s, and the [[Animal echolocation|echolocating]] [[microbat]]s. But more recent evidence has supported dividing the order into [[Yinpterochiroptera]] and [[Yangochiroptera]], with megabats as members of the former along with several species of microbats. Many bats are [[insectivore]]s, and most of the rest are [[frugivore]]s (fruit-eaters) or [[nectarivore]]s (nectar-eaters). A few species feed on animals other than insects; for example, the [[vampire bat]]s [[Hematophagy|feed on blood]]. Most bats are [[nocturnal]], and many roost in caves or other refuges; it is uncertain whether bats have these behaviours to escape [[predator]]s. Bats are present throughout the world, with the exception of extremely cold regions. They are important in their ecosystems for [[pollinator|pollinating]] [[flower]]s and dispersing seeds; many tropical plants depend entirely on bats for these services.',
34 => '',
35 => 'Bats provide humans with some direct benefits, at the cost of some disadvantages. Bat dung has been mined as [[guano]] from caves and used as fertiliser. Bats consume insect pests, reducing the need for [[pesticide]]s and other insect management measures. They are sometimes numerous enough and close enough to human settlements to serve as tourist attractions, and they are used as food across Asia and the [[Pacific Rim]]. However, fruit bats are frequently considered pests by fruit growers. Due to their physiology, bats are one type of animal that acts as a [[natural reservoir]] of many [[pathogen]]s, such as [[rabies]]; and since they are highly mobile, social, and long-lived, they can readily spread disease among themselves. If humans interact with bats, these traits become potentially dangerous to humans. Some bats are also predators of [[mosquito]]es, suppressing the transmission of [[mosquito-borne disease]]s.',
36 => '',
37 => 'Depending on the culture, bats may be symbolically associated with positive traits, such as protection from certain diseases or risks, rebirth, or long life, but in the West, bats are popularly associated with darkness, malevolence, witchcraft, [[vampire]]s, and death.',
38 => '',
39 => '== Etymology ==',
40 => '',
41 => 'An older English name for bats is [[wikt:flittermouse|flittermouse]], which matches their name in other [[Germanic languages]] (for example German ''Fledermaus'' and Swedish ''fladdermus''), related to the fluttering of wings. [[Middle English]] had ''bakke'', most likely cognate with Old Swedish ''natbakka'' ("night-bat"), which may have undergone a shift from ''-k-'' to ''-t-'' (to Modern English ''bat'') influenced by Latin ''blatta'', "moth, nocturnal insect". The word "bat" was probably first used in the early 1570s.<ref>{{cite web |url=http://www.dictionary.com/browse/bat?s=ts |title=Bat |publisher=Dictionary.com |access-date=9 September 2017}}</ref><ref>{{cite web |url=http://www.etymonline.com/index.php?term=bat |title=Bat, noun 2 |publisher=Online Etymology Dictionary |access-date=24 June 2013}}</ref> The name "Chiroptera" derives from {{lang-grc|χείρ}}{{snd}}''cheir'', "hand"<ref>{{cite web |url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dxei%2Fr |title=χείρ |publisher=A Greek-English Lexicon |editor1=Liddell, Henry G.|editor2=Scott, Robert |access-date=9 September 2017}}</ref> and πτερόν{{snd}}''pteron'', "wing".<ref name="EB1911"/><ref>{{cite web |url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dptero%2Fn |title=πτερόν |publisher=A Greek-English Lexicon |editor1=Liddell, Henry G.|editor2=Scott, Robert |access-date=9 September 2017}}</ref>',
42 => '',
43 => '== Phylogeny and taxonomy ==',
44 => '',
45 => '[[File:Batfossil.jpg|thumb|upright|The early [[Eocene]] fossil microchiropteran ''[[Icaronycteris]]'', from the [[Green River Formation]]]]',
46 => '',
47 => '=== Evolution ===',
48 => '',
49 => 'The delicate [[skeleton]]s of bats do not fossilise well; it is estimated that only 12% of bat [[genera]] that lived have been found in the fossil record.<ref>{{cite journal |last1=Eiting |first1=T. P. |last2=Gunnell |first2=G. F. |year=2009 |title=Global completeness of the bat fossil record |journal=Journal of Mammalian Evolution |volume=16 |issue=3 |pages=151–173 |doi=10.1007/s10914-009-9118-x|s2cid=5923450 }}</ref> Most of the oldest known bat fossils were already very similar to modern microbats, such as ''Archaeopteropus'' (32 million years ago). The oldest known bat fossils include ''Archaeonycteris praecursor'' and ''Altaynycteris aurora'' (55-56 million years ago), both known only from isolated teeth.<ref>{{Cite journal |last1=Tabuce |first1=Rodolphe |last2=Antunes |first2=Miguel Telles |last3=Sigé |first3=Bernard |date=2009-06-12 |title=A new primitive bat from the earliest Eocene of Europe |url=https://www.tandfonline.com/doi/full/10.1671/039.029.0204 |journal=Journal of Vertebrate Paleontology |language=en |volume=29 |issue=2 |pages=627–630 |doi=10.1671/039.029.0204 |bibcode=2009JVPal..29..627T |s2cid=86384840 |issn=0272-4634}}</ref><ref>{{Cite journal |last1=Jones |first1=Matthew F. |last2=Li |first2=Qiang |last3=Ni |first3=Xijun |last4=Beard |first4=K. Christopher |date=June 2021 |title=The earliest Asian bats (Mammalia: Chiroptera) address major gaps in bat evolution |journal=Biology Letters |language=en |volume=17 |issue=6 |pages=20210185 |doi=10.1098/rsbl.2021.0185 |pmid=34186001 |pmc=8241488 |issn=1744-957X}}</ref> The oldest complete bat skeleton is ''[[Icaronycteris]] gunnelli'' (52 million years ago), known from two skeletons discovered in Wyoming.<ref name=simmons2008 /><ref>{{Cite journal |last1=Rietbergen |first1=Tim B. |last2=Ostende |first2=Lars W. van den Hoek |last3=Aase |first3=Arvid |last4=Jones |first4=Matthew F. |last5=Medeiros |first5=Edward D. |last6=Simmons |first6=Nancy B. |date=2023-04-12 |title=The oldest known bat skeletons and their implications for Eocene chiropteran diversification |journal=PLOS ONE |language=en |volume=18 |issue=4 |pages=e0283505 |doi=10.1371/journal.pone.0283505 |doi-access=free |issn=1932-6203 |pmc=10096270 |pmid=37043445|bibcode=2023PLoSO..1883505R }}</ref> The extinct bats ''[[Palaeochiropteryx tupaiodon]]'' and ''[[Hassianycteris kumari]]'', both of which lived 48 million years ago, are the first fossil mammals whose colouration has been discovered: both were reddish-brown.<ref>{{cite web |url=http://www.sci-news.com/paleontology/science-original-color-extinct-bats-03283.html |title=Paleontologists Determine Original Color of Extinct Bats |date=29 September 2015 |access-date=10 September 2017 |publisher=SciNews}}</ref><ref>{{cite journal |first1=C. |last1=Colleary |first2=A. |last2=Dolocanc |first3=J. |last3=Gardnerd |first4=Suresh |last4=Singha |first5=M. |last5=Wuttkee |year=2015 |title=Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils |journal=Proceedings of the National Academy of Sciences of the United States of America|volume=112 |issue=41 |pages=12592–12597 |doi=10.1073/pnas.1509831112 |pmc=4611652 |bibcode=2015PNAS..11212592C |pmid=26417094|doi-access=free }}</ref>',
50 => '',
51 => 'Bats were formerly grouped in the superorder [[Archonta]], along with the [[treeshrew]]s (Scandentia), [[colugo]]s (Dermoptera), and [[primate]]s.<ref name="Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa">{{cite journal |last1=Van de Bussche |first1=R. A. |last2=Hoofer |first2=S. R. |title=Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa |journal=Journal of Mammalogy |year=2004 |volume=85 |issue=2 |pages=321–330 |doi=10.1644/1545-1542(2004)085<0321:Prarcf>2.0.Co;2|doi-access=free }}</ref> Modern genetic evidence now places bats in the superorder [[Laurasiatheria]], with its [[sister taxon]] as [[Ferungulata]], which includes [[carnivora]]ns, [[pangolin]]s, [[odd-toed ungulate]]s, [[even-toed ungulate]]s, and [[cetacea]]ns.<ref name="Bat Schematics">{{cite web |url=http://www.ucmp.berkeley.edu/mammal/eutheria/chirosy.html |title=Chiroptera: Systematics |first=D. |last=Smith |publisher=University of California Museum of Paleontology |access-date=9 September 2017}}</ref><ref name="classification">{{cite journal |quote=Several molecular studies have shown that Chiroptera belong to the Laurasiatheria (represented by carnivores, pangolins, cetartiodactyls, eulipotyphlans, and perissodactyls) and are only distantly related to dermopterans, scandentians, and primates. (Nikaido et al. 2000; Lin and Penny 2001; Madsen et al. 2001; Murphy et al. 2001''a'', 2001''b''; Van Den Bussche and Hoofer 2004) |title=A Nuclear DNA Phylogenetic Perspective on the Evolution of Echolocation and Historical Biogeography of Extant Bats (Chiroptera) |doi=10.1093/molbev/msi180 |year=2005 |author=Eick, G. N. |journal=Molecular Biology and Evolution |volume=22 |pmid=15930153 |last2=Jacobs |first2=D. S. |last3=Matthee |first3=C. A. |issue=9 |pages=1869–1886|doi-access=free }}</ref><ref name=Pumo1998>{{cite journal |author=Pumo, D. E. |year=1998 |title=Complete Mitochondrial Genome of a Neotropical Fruit Bat, ''Artibeus jamaicensis'', and a New Hypothesis of the Relationships of Bats to Other Eutherian Mammals |journal=Journal of Molecular Evolution |volume=47 |issue=6 |pages=709–717 |doi=10.1007/PL00006430 |pmid=9847413|display-authors=etal |bibcode=1998JMolE..47..709P |s2cid=22900642 }}</ref><ref name=Zhou2011>{{cite journal |author=Zhou, X. |year=2011 |title=Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals |journal=Systematic Biology |volume=61 |issue=1 |pages=150–164 |doi=10.1093/sysbio/syr089 |pmid=21900649 |pmc=3243735 |display-authors=etal}}</ref><ref name="Tsagkogeorga"/> One study places Chiroptera as a sister taxon to odd-toed ungulates (Perissodactyla).<ref>{{cite journal |last=Zhang |first=G. |author2=Cowled, C. |author3=Shi, Z. |author4=Huang, Z. |author5=Bishop-Lilly, K. A. |author6=Fang, X. |author7=Wynne, J. W. |author8=Xiong, Z. |author9=Baker, M. L. |author10=Zhao, W. |author11=Tachedjian, M. |author12=Zhu, Y. |author13=Zhou, P. |author14=Jiang, X. |author15=Ng, J. |author16=Yang, L. |author17=Wu, L. |author18=Xiao, J. |author19=Feng, Y. |author20=Chen, Y. |author21=Sun, X. |author22=Zhang, Y. |author23=Marsh, G. A. |author24=Crameri, G. |author25=Broder, C. C. |author26=Frey, K. G. |author27=Wang, L.-F. |author28=Wang, J. |s2cid=31192292 |title=Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity |journal=Science |year=2012 |volume=339 |issue=6118 |pages=456–460 |doi=10.1126/science.1230835 |bibcode=2013Sci...339..456Z |pmid=23258410|pmc=8782153 }}</ref>',
52 => '',
53 => '{{cladogram|align=left|style=width:800px;font-size:85%;line-height:75%|caption=[[Phylogenetic tree]] showing Chiroptera within [[Laurasiatheria]], with [[Fereuungulata]] as its [[sister taxon]] according to a 2013 study<ref name="Tsagkogeorga"/>',
54 => '|cladogram={{clade',
55 => '|label1=[[Boreoeutheria]]',
56 => '|1={{clade',
57 => ' |1=[[Euarchontoglires]] (primates, treeshrews, rodents, rabbits) [[File:Cynocephalus doguera - 1700-1880 - Print - Iconographia Zoologica - Special Collections University of Amsterdam - (white background).tiff|50px]]',
58 => '|label2=[[Laurasiatheria]]',
59 => ' |2={{clade',
60 => ' |1= [[Eulipotyphla]] (hedgehogs, shrews, moles, solenodons)[[File:Mole white background.jpg|60px| ]]',
61 => ' |label2=[[Scrotifera]]',
62 => ' |2={{clade',
63 => ' |1= '''Chiroptera''' (bats) [[File:Flying fox at botanical gardens in Sydney (cropped and flipped).jpg|80px| ]]',
64 => ' |label2=[[Fereuungulata]]',
65 => ' |2={{clade',
66 => ' |label1=[[Ferae]]',
67 => ' |1={{clade',
68 => ' |1= [[Pangolin|Pholidota]] (pangolins) [[File:FMIB 46859 Pangolin a grosse queue white background.jpeg|70px| ]]',
69 => ' |2= [[Carnivora]] (cats, hyenas, dogs, bears, seals, weasels) [[File:Hyaena striata - 1818-1842 - Print - Iconographia Zoologica - Special Collections University of Amsterdam -(white background).jpg|60 px]] [[File:Zalophus californianus J. Smit (white background).jpg|60 px]]',
70 => ' }}',
71 => ' |label2=[[Euungulata]]',
72 => ' |2={{clade',
73 => ' |1= [[Odd-toed ungulate|Perissodactyla]] (horses, tapirs, rhinos) [[File:Equus quagga (white background).jpg|60px| ]]',
74 => ' |2= [[Cetartiodactyla]] (camels, ruminants, whales) [[File:Walia ibex illustration white background.png|60 px]] [[File:Megaptera novaeangliae NOAA.jpg|100 px]]',
75 => ' }}',
76 => ' }}',
77 => ' }}',
78 => ' }}',
79 => '}}',
80 => '}}',
81 => '}}',
82 => '{{Clear}}',
83 => 'The [[flying primate hypothesis]] proposed that when adaptations to flight are removed, megabats are allied to [[primate]]s by anatomical features not shared with microbats and thus flight evolved twice in mammals.<ref name="Bailey1992">{{cite journal|last1=Bailey|first1=W. J.|last2=Slightom|first2=J. L.|last3=Goodman|first3=M.|year=1992|title=Rejection of the "Flying Primate" Hypothesis by Phylogenetic Evidence from the ε-globin Gene|journal=Science|volume=256|issue=5053|pages=86–89|doi=10.1126/science.1301735|pmid=1301735|bibcode=1992Sci...256...86B}}</ref> Genetic studies have strongly supported the [[monophyly]] of bats and the single origin of mammal flight.<ref name=simmons2008/><ref name="Bailey1992"/>',
84 => '',
85 => '==== Coevolutionary evidence ====',
86 => '',
87 => 'An independent molecular analysis trying to establish the dates when bat ectoparasites ([[Cimicidae|bedbugs]]) evolved came to the conclusion that bedbugs similar to those known today (all major extant lineages, all of which feed primarily on bats) had already diversified and become established over 100 mya (i.e., long before the oldest records for bats, 52 mya), suggesting that they initially all evolved on non-bat hosts and "bats were colonized several times independently, unless the evolutionary origin of bats has been grossly underestimated."<ref>{{Cite journal|last1=Roth|first1=Steffen|last2=Balvín|first2=Ondřej|last3=Siva-Jothy|first3=Michael T.|last4=Iorio|first4=Osvaldo Di|last5=Benda|first5=Petr|last6=Calva|first6=Omar|last7=Faundez|first7=Eduardo I.|last8=Khan|first8=Faisal Ali Anwarali|last9=McFadzen|first9=Mary|last10=Lehnert|first10=Margie P.|last11=Naylor|first11=Richard|date=2019-06-03|title=Bedbugs Evolved before Their Bat Hosts and Did Not Co-speciate with Ancient Humans|journal=Current Biology|language=English|volume=29|issue=11|pages=1847–1853.e4|doi=10.1016/j.cub.2019.04.048|issn=0960-9822|pmid=31104934|s2cid=155105169 |doi-access=free}}</ref> [[Flea]]s, as a group, are quite old (most flea families formed around the end of the Cretaceous<ref>{{cite journal |last1=Zhu |first1=Qiyun |last2=Hastriter |first2=Michael |last3=Whiting |first3=Michael |last4=Dittmar |first4=Katherina |title=Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria |journal=Molecular Phylogenetics and Evolution |date=September 2015 |volume=90 |pages=129–139 |biorxiv=10.1101/014308 |doi=10.1016/j.ympev.2015.04.027 |pmid=25987528|s2cid=13433327 }}</ref>), but no analyses have provided estimates for the age of the flea lineages associated with bats. The oldest known members of a different lineage of bat ectoparasites ([[Streblidae|bat flies]]), however, are from roughly 20 mya, well after the origin of bats.<ref name="Poinar&Brown2012">{{cite journal |last1=Poinar |first1=G. O. Jr. |last2=Brown |first2=A. |year=2012 |title=The first fossil streblid bat fly, ''Enischnomyia stegosoma'' n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae) |journal=Systematic Parasitology |volume=81 |issue=2 |pages=79–86 |doi=10.1007/s11230-011-9339-2 |pmid=22183917 |s2cid=14469619 |url=https://www.researchgate.net/publication/51902205}}</ref> The bat-ectoparasitic [[earwig]] family [[Arixeniidae]] has no fossil record, but is not believed to originate more than 23 mya.<ref name="EvolutionoftheInsects">{{cite book|last=Grimaldi|first=David|author2=Michael Engel|title=Evolution of the Insects|publisher=Cambridge University Press|location=Cambridge University|date=May 2005|edition=1|series=Cambridge Evolution Ser.|pages=217–222|chapter=7|isbn=978-0-521-82149-0|chapter-url=https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig%20related&pg=PA217|access-date=16 November 2009|archive-date=9 June 2021|archive-url=https://web.archive.org/web/20210609004340/https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig+related&pg=PA217|url-status=live}}</ref>',
88 => '',
89 => '===Inner systematic===',
90 => '{{cladogram|align=left|style=width:700px;font-size:85%;line-height:75%|caption=Internal relationships of the Chiroptera, divided into the traditional megabat and microbat clades, according to a 2011 study<ref name=agnarsson>{{cite journal |first1=I. |last1=Agnarsson |first2=C. M. |last2=Zambrana-Torrelio |first3=N. P. |last3=Flores-Saldana |first4=L. J. |last4=May-Collado |year=2011 |title=A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) |journal=PLOS Currents |volume=3 |pages=RRN1212 |doi=10.1371/currents.RRN1212 |doi-broken-date=31 January 2024 |pmid=21327164 |pmc=3038382 |doi-access=free }}</ref>',
91 => '|cladogram={{clade',
92 => '|label1='''Chiroptera'''',
93 => '|1={{clade',
94 => ' |1={{clade',
95 => ' |label1=[[Megabat|Megachiroptera]]',
96 => ' |1=[[Megabat|Pteropodidae]] (megabats) [[File:Mariana Fruit Bat.jpg|40px]]',
97 => ' }}',
98 => ' |2={{clade',
99 => ' |label1=[[Microbat|Microchiroptera]]',
100 => ' |1={{clade',
101 => ' |1={{clade',
102 => ' |label1=[[Mouse-tailed bat|Rhinolophoidea]]',
103 => ' |1={{clade',
104 => ' |1=[[Megadermatidae]] (false vampire bats) [[File:Megaderma spasma.jpg|60px]]',
105 => ' |2={{clade',
106 => ' |1={{clade',
107 => ' |1=[[Kitti's hog-nosed bat|Craseonycteridae]] (Kitti's hog-nosed bat) [[File:Craseonycteris thonglongyai.png|60px]]',
108 => ' |2=[[Mouse-tailed bat|Rhinopomatidae]] (mouse-tailed bats) [[File:Rhinopoma microphyllum.jpg|60px]]',
109 => ' }}',
110 => ' |3={{clade',
111 => ' |1=[[Hipposideridae]] (Old World leaf-nosed bats) [[File:Commerson's leaf-nosed bats hipposideros commersoni.jpg|60px]]',
112 => ' |2=[[Horseshoe bat|Rhinolophidae]] (horseshoe bats) [[File:Rhinolophus rouxii.jpg|40px]]',
113 => ' }}',
114 => ' }}',
115 => ' }}',
116 => ' }}',
117 => ' |2={{clade',
118 => ' |label1=[[Yangochiroptera]]',
119 => ' |1={{clade',
120 => ' |1={{clade',
121 => ' |1={{clade',
122 => ' |1={{clade',
123 => ' |1=[[Miniopterus|Miniopteridae]] (long winged bat) [[File:Miniopterus schreibersii dasythrix.jpg|60px]]',
124 => ' }}',
125 => ' |2={{clade',
126 => ' |1={{clade',
127 => ' |1={{clade',
128 => ' |1=[[Bulldog bat|Noctilionidae]] (fisherman bats) [[File:Captive Noctilio leporinus.jpg|40px]]',
129 => ' |2=[[Mormoopidae]] (''[[Pteronotus]]'') [[File:Pteronotus parnellii.jpg|60px]]',
130 => ' }}',
131 => ' |2={{clade',
132 => ' |1={{clade',
133 => ' |1={{clade',
134 => ' |1=[[Mystacinidae]] (New Zealand short-tailed bats) [[File:MystacinaTuberculataFord.jpg|70px]]',
135 => ' |2=[[Thyroptera|Thyropteridae]] (disc-winged bats)',
136 => ' }}',
137 => ' |2={{clade',
138 => ' |1=[[Furipteridae]] [[File:Furipterus horrens.jpg|50px]]',
139 => ' |2=[[Mormoopidae]] (''[[Mormoops]]'') [[File:Mormoops megalophylla.JPG|50px]]',
140 => ' }}',
141 => ' }}',
142 => ' |3<!--should be 2?-->=[[Leaf-nosed bat|Phyllostomidae]] (New World leaf-nosed bats) [[File:Desmodus rotundus A Catenazzi.jpg|50px]]',
143 => ' }}',
144 => ' }}',
145 => ' }}',
146 => ' |3={{clade',
147 => ' |1={{clade',
148 => ' |1=[[Free-tailed bat|Molossidae]] (free-tailed bats) [[File:Mormopterus beccarii astrolabiensis 1.jpg|50px]]',
149 => ' |2=[[Emballonuridae]] (sac-winged bats) [[File:Emballonura semicaudata, Ovalau Island - Joanne Malotaux (22057146275).jpg|50px]]',
150 => ' }}',
151 => ' |2={{clade',
152 => ' |1={{clade',
153 => ' |1=[[Myzopoda|Myzopodidae]] (sucker-footed bats)',
154 => ' |2=[[Emballonuridae]] (''[[Taphozous]]'') [[File:Mauritian Tomb Bat.jpg|50px]]',
155 => ' }}',
156 => ' |2={{clade',
157 => ' |1=[[Natalidae]] (funnel-eared bats) [[File:Chilonatalus micropus.png|50px]]',
158 => ' |2=[[Vespertilionidae]] (vesper bats) [[File:Barbastella barbastellus 01-cropped.jpg|50px]]',
159 => ' }}',
160 => ' }}',
161 => ' }}',
162 => ' }}',
163 => ' }}',
164 => ' }}',
165 => ' }}',
166 => ' }}',
167 => ' }}',
168 => ' }}',
169 => ' }}',
170 => '}}',
171 => '',
172 => '{{Clear}}',
173 => '',
174 => '[[Genetics|Genetic]] evidence indicates that megabats originated during the early [[Eocene]], and belong within the four major lines of microbats.<ref name=Tsagkogeorga /> Two new suborders have been proposed; [[Yinpterochiroptera]] includes the [[Megabat|Pteropodidae]], or megabat family, as well as the families [[Horseshoe bat|Rhinolophidae]], [[Hipposideridae]], [[Craseonycteridae]], [[Megadermatidae]], and [[Rhinopomatidae]].<ref name="Teeling-etal-2005">{{cite journal |last=Teeling |first=E.C. |author2=Springer, M. S. |author3=Madsen, O. |author4=Bates, P. |author5=O'Brien, S. J. |author6=Murphy, W. J. |year=2005 |author-link=Emma Teeling |title=A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record |journal=Science |volume=307 |issue=5709 |pages=580–584 |bibcode=2005Sci...307..580T |doi=10.1126/science.1105113 |pmid=15681385|s2cid=25912333 }}</ref> [[Yangochiroptera]] includes the other families of bats (all of which use laryngeal echolocation), a conclusion supported by a 2005 DNA study.<ref name="Teeling-etal-2005" /> A 2013 phylogenomic study supported the two new proposed suborders.<ref name="Tsagkogeorga">{{cite journal |doi=10.1016/j.cub.2013.09.014 |last1=Tsagkogeorga |first1=G. |last2=Parker |first2=J. |last3=Stupka |first3=E. |last4=Cotton |first4=J. A. |last5=Rossiter |first5=S. J. |year=2013 |title=Phylogenomic analyses elucidate the evolutionary relationships of bats (Chiroptera) |journal=Current Biology |volume=23 |pages=2262–2267 |issue=22 |pmid=24184098|doi-access=free }}</ref>',
175 => '',
176 => '{{cladogram|align=left|style=width:700px;font-size:85%;line-height:75%|caption=Internal relationships of the Chiroptera, with the megabats subsumed within Yinpterochiroptera, according to a 2013 study<ref name="Tsagkogeorga"/>',
177 => '|cladogram={{clade',
178 => '|label1='''Chiroptera'''',
179 => '|1={{clade',
180 => ' |1={{clade',
181 => ' |1=[[Yangochiroptera]] (as above) [[File:Pteronotus parnellii.jpg|60px]]',
182 => ' |2={{clade',
183 => ' |label1=[[Yinpterochiroptera]]',
184 => ' |1={{clade',
185 => ' |1=[[Megabat|Pteropodidae]] (megabats) [[File:Mariana Fruit Bat.jpg|40px]]',
186 => ' |2={{clade',
187 => ' |label1=[[Rhinolophoidea]]',
188 => ' |1={{clade',
189 => ' |1=[[Megadermatidae]] (false vampire bats) [[File:Megaderma spasma.jpg|60px]]',
190 => ' |2= horseshoe bats and allies [[File:Rhinolophus rouxii.jpg|40px]]',
191 => ' }}',
192 => ' }}',
193 => ' }}',
194 => ' }}',
195 => ' }}',
196 => ' }}',
197 => '}}',
198 => '}}{{Clear}}',
199 => '<!--flight-->',
200 => '[[File:Golden crowned fruit bat.jpg|thumb|upright=0.6|[[Giant golden-crowned flying fox]], ''Acerodon jubatus'']]',
201 => 'The 2003 discovery of an early fossil bat from the 52-million-year-old [[Green River Formation]], ''[[Onychonycteris|Onychonycteris finneyi]]'', indicates that flight evolved before echolocative abilities.<ref>{{cite journal |last1=Simmons |first1=N. B. |first2=K. L. |last2=Seymour |first3=J. |last3=Habersetzer |first4=G. F. |last4=Gunnell |year=2008 |title=Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation |journal=Nature |volume=451 |issue=7180 |pages=818–816 |doi=10.1038/nature06549 |pmid=18270539|bibcode=2008Natur.451..818S |hdl=2027.42/62816 |s2cid=4356708 |hdl-access=free }}</ref><ref>{{cite news |url=http://news.bbc.co.uk/2/hi/science/nature/7243502.stm |title=Bat fossil solves evolution poser |date=13 February 2008 |work=BBC News|access-date=17 December 2017}}</ref> ''Onychonycteris'' had claws on all five of its fingers, whereas modern bats have at most two claws on two digits of each hand. It also had longer hind legs and shorter forearms, similar to climbing mammals that hang under branches, such as [[sloth]]s and [[gibbon]]s. This palm-sized bat had short, broad wings, suggesting that it could not fly as fast or as far as later bat species. Instead of flapping its wings continuously while flying, ''Onychonycteris'' probably alternated between flaps and glides in the air.<ref name=simmons2008>{{cite journal |journal=Nature |doi=10.1038/nature06549 |title=Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation |first1=N. B. |last1=Simmons |first2=K. L. |last2=Seymour |first3=J. |last3=Habersetzer |first4=G. F. |last4=Gunnell |volume=451 |year=2008 |pmid=18270539 |issue=7180 |bibcode=2008Natur.451..818S |pages=818–821|hdl=2027.42/62816 |s2cid=4356708 |hdl-access=free }}</ref> This suggests that this bat did not fly as much as modern bats, but flew from tree to tree and spent most of its time climbing or hanging on branches.<ref name=norberg>{{cite book |url={{google books|plainurl=yes |id=xf2QW_TS6asC |page=206}}|first=U. M. |last=Norberg |editor1-first=P. C. |editor1-last=Wainwright |editor2-first=S. M. |editor2-last=Reilly |year=1994 |title=Ecological Morphology: Integrative Organismal Biology |publisher=University of Chicago Press |pages=206–208 |isbn=978-0-226-86995-7}}</ref> The distinctive features of the ''Onychonycteris'' fossil also support the hypothesis that mammalian flight most likely evolved in arboreal locomotors, rather than terrestrial runners. This model of flight development, commonly known as the "trees-down" theory, holds that bats first flew by taking advantage of height and gravity to drop down on to prey, rather than running fast enough for a ground-level take off.<ref>{{cite journal |last=Bishop |first=K. L. |year=2008 |title=The Evolution of Flight in Bats: Narrowing the Field of Plausible Hypotheses |journal=The Quarterly Review of Biology |volume=83 |issue=2 |pages=153–169 |doi=10.1086/587825 |pmid=18605533|s2cid=21638734 }}</ref><ref name="Kaplan2011">{{cite journal |last1=Kaplan |first1=Matt |title=Ancient bats got in a flap over food |journal=Nature|year=2011 |doi=10.1038/nature.2011.9304|s2cid=84015350 }}</ref>',
202 => '',
203 => '<!--echoes-->',
204 => 'The molecular phylogeny was controversial, as it pointed to microbats [[paraphyly|not having a unique common ancestry]], which implied that some seemingly unlikely transformations occurred. The first is that laryngeal echolocation evolved twice in bats, once in Yangochiroptera and once in the rhinolophoids.<ref>{{cite journal |author=Teeling |year=2000 |title=Molecular evidence regarding the origin of echolocation and flight in bats |journal=Nature |volume=403 |issue=6766 |pages=188–192 |bibcode=2000Natur.403..188T |doi=10.1038/35003188 |last2=Teeling |first2=E. C. |last3=Scally |first3=M. |last4=Kao |first4=D. J. |last5=Romagnoli |first5=M. L. |last6=Springer |first6=M. S. |author-link2=Emma Teeling |pmid=10646602|s2cid=205004782 }}</ref> The second is that laryngeal echolocation had a single origin in Chiroptera, was subsequently lost in the family Pteropodidae (all megabats), and later evolved as a system of tongue-clicking in the genus ''Rousettus''.<ref>{{cite journal |year=2001 |title=Integrated fossil and molecular data reconstruct bat echolocation |journal=Proceedings of the National Academy of Sciences |volume=98 |issue=11 |pages=6241–6246 |bibcode=2001PNAS...98.6241S |doi=10.1073/pnas.111551998 |pmid=11353869 |pmc=33452|last1=Springer|first1=M. S.|last2=Teeling |first2=E. C. |last3=Madsen |first3=O. |last4=Stanhope |first4=M. J. |last5=De Jong |first5=W. W.|author-link2=Emma Teeling|doi-access=free }}</ref> Analyses of the sequence of the vocalization gene ''FoxP2'' were inconclusive on whether laryngeal echolocation was lost in the pteropodids or gained in the echolocating lineages.<ref>{{cite journal |last1=L. |first1=G. |last2=Wang |first2=J. |last3=Rossiter |first3=S. J. |last4=Jones |first4=G. |last5=Zhang |first5=S. |year=2007 |title=Accelerated FoxP2 evolution in echolocating bats |journal=PLOS ONE|volume=2 |issue=19 |pages=e900|doi=10.1371/journal.pone.0000900 |pmc=1976393 |bibcode=2007PLoSO...2..900L |pmid=17878935|doi-access=free }}</ref> Echolocation probably first derived in bats from communicative calls. The Eocene bats ''[[Icaronycteris]]'' (52 million years ago) and ''[[Palaeochiropteryx]]'' had cranial adaptations suggesting an ability to detect [[ultrasound]]. This may have been used at first mainly to forage on the ground for insects and map out their surroundings in their gliding phase, or for communicative purposes. After the adaptation of flight was established, it may have been refined to target flying prey by echolocation.<ref name=norberg/> Analyses of the hearing gene ''Prestin'' seem to favour the idea that echolocation developed independently at least twice, rather than being lost secondarily in the pteropodids,<ref>{{cite journal|last1=Li |first1=G.|last2=Wang |first2=J. |last3=Rossiter |first3=S. J.|last4=Jones |first4=G. |last5=Cotton |first5=J. A. |last6=Zhang |first6=S. |year=2008 |title=The hearing gene Prestin reunites the echolocating bats |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=105 |issue=37 |pages=13959–13964 |doi=10.1073/pnas.0802097105 |pmc=2544561 |bibcode=2008PNAS..10513959L |pmid=18776049|doi-access=free}}</ref> but [[ontogeny|ontogenic]] analysis of the cochlea supports that laryngeal echolocation evolved only once.<ref>{{cite journal|doi=10.1038/s41559-016-0021|pmid=28812602|title=Prenatal development supports a single origin of laryngeal echolocation in bats|journal=Nature Ecology & Evolution|volume=1|issue=2|pages=21|year=2017|last1=Wang|first1=Zhe|last2=Zhu|first2=Tengteng|last3=Xue|first3=Huiling|last4=Fang|first4=Na|last5=Zhang|first5=Junpeng|last6=Zhang|first6=Libiao|last7=Pang|first7=Jian|last8=Teeling|first8=Emma C.|last9=Zhang|first9=Shuyi|bibcode=2017NatEE...1...21W |s2cid=29068452|author-link=Emma Teeling}}</ref>',
205 => '',
206 => '===Classification===',
207 => '',
208 => '{{See also|List of bats|List of fruit bats}}',
209 => '',
210 => 'Bats are [[placental mammal]]s. After [[rodent]]s, they are the largest [[order (biology)|order]], making up about 20% of mammal species.<ref name="LeiDong2016">{{cite journal |last1=Lei |first1=M. |last2=Dong |first2=D. |title=Phylogenomic analyses of bat subordinal relationships based on transcriptome data |journal=Scientific Reports |year=2016 |volume=6 |page=27726 |doi=10.1038/srep27726 |pmid=27291671 |pmc=4904216 |bibcode=2016NatSR...627726L }}</ref> In 1758, [[Carl Linnaeus]] classified the seven bat species he knew of in the genus ''[[Vespertilio]]'' in the order [[Primates]]. Around twenty years later, the German naturalist [[Johann Friedrich Blumenbach]] gave them their own order, Chiroptera.<ref>{{cite book |chapter-url={{google books|plainurl=yes|id=gI-Sly7oq7QC|page=288}}|chapter=Phylogeny and systematics |title=The Biology of Bats |last=Neuweiler |first=Gerhard |year=2000 |publisher=Oxford University Press |isbn=978-0195099508 |pages=287–299}}</ref> Since then, the number of described species has risen to over 1,400,<ref>{{cite web| url=https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ| website=ASM Mammal Diversity Database| date=8 June 2020| title=<nowiki>Search=Chiroptera</nowiki>| access-date=8 June 2020| archive-date=26 May 2017| archive-url=https://web.archive.org/web/20170526143337/https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ| url-status=dead}}</ref> traditionally classified as two suborders: [[Megabat|Megachiroptera]] (megabats), and [[Microbat|Microchiroptera]] (microbats/echolocating bats).<ref name=prothero>{{cite book |first=D. R. |last=Prothero |year=2017 |chapter-url={{Google books|plainurl=yes|id=eiftDAAAQBAJ|page=113}} |title=The Princeton Field Guide to Prehistoric Mammals |chapter=Laurasiatheria: Chiroptera |publisher=Princeton University Press |pages=112–116 |isbn=978-0-691-15682-8}}</ref> Not all megabats are larger than microbats.<ref>{{cite journal |first1=J. M. |last1=Hutcheon |first2=T. |last2=Garland |year=2004 |title=Are Megabats Big? |journal=Journal of Mammalian Evolution |volume=11 |issue=3/4 |pages=257 |doi=10.1023/B:JOMM.0000047340.25620.89 |s2cid=11528722 |url=https://www.researchgate.net/publication/226036305}}</ref> Several characteristics distinguish the two groups. Microbats use [[Animal echolocation|echolocation]] for navigation and finding prey, but megabats apart from those in the genus ''[[Rousettus]]'' do not.<ref name="Holland 2004">{{cite journal |title=Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810 |author=Holland, R. A. |journal=Journal of Experimental Biology |year=2004 |volume=207 |pages=4361–4369 |doi=10.1242/jeb.01288 |issue=25 |pmid=15557022|doi-access= |s2cid=2715542 }}</ref> Accordingly, megabats have a well-developed eyesight.<ref name=prothero/> Megabats have a claw on the second finger of the forelimb.<ref>{{cite journal |title=Natural selection of mammalian brain components |author=Brown, W. M. |journal=Trends in Ecology and Evolution |year=2001 |volume=16 |issue=9 |pages=471–473 |doi=10.1016/S0169-5347(01)02246-7}}</ref><ref name="Olney 1994"/> The external ears of microbats do not close to form a ring; the edges are separated from each other at the base of the ear.<ref name="Olney 1994">{{cite book |title=Creative Conservation: Interactive Management of Wild and Captive Animals |url=https://archive.org/details/creativeconserva00magi |url-access=limited |publisher=Springer |author=Stephen, J. |author2=Olney, P. |year=1994 |page=[https://archive.org/details/creativeconserva00magi/page/n378 352] |isbn=978-0412495700}}</ref> Megabats [[frugivory|eat fruit]], [[nectarivore|nectar]], or pollen, while most microbats [[insectivory|eat insects]]; others feed on fruit, nectar, pollen, [[piscivore|fish]], frogs, small mammals, or [[hematophagy|blood]].<ref name=prothero/>',
211 => '[[File:Haeckel Chiroptera.jpg|thumb|upright|"Chiroptera" from [[Ernst Haeckel]]'s ''[[Kunstformen der Natur]]'', 1904]]',
212 => '',
213 => 'Below is a table chart following the bat classification of families recognized by various authors of the ninth volume of ''Handbook of the Mammals of the World'' published in 2019:<ref name="HMW2019">{{cite book | year = 2019 | editor1-last = Wilson | editor1-first = D.E.| editor2-last = Mittermeier | editor2-first = R.A. | title = Handbook of the Mammals of the World – Volume 9 | publisher = Lynx Ediciones |location=Barcelona | pages = 1–1008 |isbn =978-84-16728-19-0}}</ref>',
214 => '{| class="wikitable"',
215 => '|colspan="100%" align="center" bgcolor="#c2c2a9"|'''[[Chiroptera]] <small>Blumenbach, 1779</small>'''',
216 => '|-',
217 => '|colspan="100%" align="center" bgcolor="#d9d9c1"|'''[[Yinpterochiroptera]] <small>Springer, Teeling, Madsen, Stanhope & Jong, 2001</small>'''',
218 => '|-',
219 => '|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Pteropodidae|Pteropodoidea]] <small>J. E. Gray, 1821</small>'''',
220 => '|-',
221 => '! Family !! English Name !! Number of Species !! Image Figure',
222 => '|-',
223 => '|[[Pteropodidae]] <small>J. E. Gray, 1821</small>',
224 => '|Old World fruit bats',
225 => '|191',
226 => '|[[File:Pteropus niger three.jpeg|100px]]',
227 => '|-',
228 => '|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Rhinolophoidea]] <small>J. E. Gray, 1825</small>'''',
229 => '|-',
230 => '! Family !! English Name !! Number of Species !! Image Figure',
231 => '|-',
232 => '|[[Rhinopomatidae]] <small>Bonaparte, 1838</small>',
233 => '|Mouse-tailed bats',
234 => '|6',
235 => '|[[File:Mouse-Tailed Bat.jpg|100px]]',
236 => '|-',
237 => '|[[Craseonycteridae]] <small>Hill, 1974</small>',
238 => '|Hog-nosed bat',
239 => '|1',
240 => '|[[File:Craseonycteris thonglongyai.png|100px]]',
241 => '|-',
242 => '|[[Megadermatidae]] <small>H. Allen, 1864</small>',
243 => '|False-vampires',
244 => '|6',
245 => '|[[File:Greater False Vampire Bat (Megaderma lyra).jpg|100px]]',
246 => '|-',
247 => '|[[Rhinonycteridae]] <small>J. E. Gray, 1866</small>',
248 => '|Trident bats',
249 => '|9',
250 => '|[[File:Rhinonicteris aurantia.jpg|100px]]',
251 => '|-',
252 => '|[[Hipposideridae]] <small>Lydekker, 1891</small>',
253 => '|Old World leaf-nosed bats',
254 => '|88',
255 => '|[[File:Bat in a Cave.jpg|100px]]',
256 => '|-',
257 => '|[[Rhinolophidae]] <small>J. E. Gray, 1825</small>',
258 => '|Horseshoe bats',
259 => '|109',
260 => '|[[File:Bat(20070605).jpg|100px]]',
261 => '|-',
262 => '|colspan="100%" align="center" bgcolor="#d9d9c1"|'''[[Yangochiroptera]] <small>Koopman, 1984</small>'''',
263 => '|-',
264 => '|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Emballonuroidea]] <small>Gervais in de Castelnau, 1855</small>'''',
265 => '|-',
266 => '! Family !! English Name !! Number of Species !! Image Figure',
267 => '|-',
268 => '|[[Nycteridae]] <small>Van der Hoeven, 1855</small>',
269 => '|Slit-faced bats',
270 => '|15',
271 => '|[[File:Common Slit-faced Bat (Nycteris thebaica) (7027172215).jpg|100px]]',
272 => '|-',
273 => '|[[Emballonuridae]] <small>Gervais in de Castelnau, 1855</small>',
274 => '|Sheath-tailed bats',
275 => '|54',
276 => '|[[File:Emballonura semicaudata.jpg|100px]]',
277 => '|-',
278 => '|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Noctilionoidea]] <small>J. E. Gray, 1821</small>'''',
279 => '|-',
280 => '! Family !! English Name !! Number of Species !! Image Figure',
281 => '|-',
282 => '|[[Myzopodidae]] <small>Thomas, 1904</small>',
283 => '|Madagascar sucker-footed bats',
284 => '|2',
285 => '|[[File:Myzopoda Myzopodidae.jpg|100px]]',
286 => '|-',
287 => '|[[Mystacinidae]] <small>Dobson, 1875</small>',
288 => '|New Zealand short-tailed bats',
289 => '|2',
290 => '|[[File:Southern short-tailed bats, Mystacina tuberculata.jpg|100px]]',
291 => '|-',
292 => '|[[Thyropteridae]] <small>Miller, 1907</small>',
293 => '|Disk-winged bats',
294 => '|5',
295 => '|[[File:Thyroptera discifera.jpg|100px]]',
296 => '|-',
297 => '|[[Furipteridae]] <small>J. E. Gray, 1866</small>',
298 => '|Smoky bat and thumbless bat',
299 => '|2',
300 => '|[[File:Furipterus horrens.jpg|100px]]',
301 => '|-',
302 => '|[[Noctilionidae]] <small>J. E. Gray, 1821</small>',
303 => '|Bulldog bats',
304 => '|2',
305 => '|[[File:Captive Noctilio leporinus.jpg|100px]]',
306 => '|-',
307 => '|[[Mormoopidae]] <small>Saussure, 1860</small>',
308 => '|Ghost-faced, naked-backed and mustached bats',
309 => '|18',
310 => '|[[File:Mormoops megalophylla.JPG|100px]]',
311 => '|-',
312 => '|[[Phyllostomidae]] <small>J. E. Gray, 1825</small>',
313 => '|New World leaf-nosed bats',
314 => '|217',
315 => '|[[File:Phyllostomus discolor b.jpg|100px]]',
316 => '|-',
317 => '|colspan="100%" align="center" bgcolor="#ebebd2"|'''[[Vespertilionoidea]] <small>J. E. Gray, 1821</small>'''',
318 => '|-',
319 => '! Family !! English Name !! Number of Species !! Image Figure',
320 => '|-',
321 => '|[[Natalidae]] <small>J. E. Gray, 1825</small>',
322 => '|Funnel-eared bats',
323 => '|10',
324 => '|[[File:Natalus stramineus.jpg|100px]]',
325 => '|-',
326 => '|[[Molossidae]] <small>Gervais in de Castelnau, 1855</small>',
327 => '|Free-tailed bats',
328 => '|126',
329 => '|[[File:Mormopterus beccarii astrolabiensis 1.jpg|100px]]',
330 => '|-',
331 => '|[[Miniopteridae]] <small>Dobson, 1875</small>',
332 => '|Long-fingered bats',
333 => '|38',
334 => '|[[File:Southern bentwing bat.jpg|100px]]',
335 => '|-',
336 => '|[[Cistugidae]] <small>Lack et al., 2010</small>',
337 => '|Wing-gland bats',
338 => '|2',
339 => '|',
340 => '|-',
341 => '|[[Vespertilionidae]] <small>J. E. Gray, 1821</small>',
342 => '|Vesper bats',
343 => '|496',
344 => '|[[File:Vespertilio murinus 2.jpg|100px]]',
345 => '|-',
346 => '|}',
347 => '',
348 => '==Anatomy and physiology==',
349 => '===Skull and dentition===',
350 => '',
351 => '[[File:Horniman fruit bat skin skeleton.jpg|thumb|right|A preserved megabat showing how the skeleton fits inside its skin]]',
352 => '',
353 => 'The head and teeth shape of bats can vary by species. In general, megabats have longer snouts, larger eye sockets and smaller ears, giving them a more dog-like appearance, which is the source of their nickname of "flying foxes".<ref>{{cite book|author=Fleming, T.|year=2003|title=A Bat Man in the Tropics: Chasing El Duende|url=https://archive.org/details/batmantropicscha00flem|url-access=limited|publisher=University of California Press|page=[https://archive.org/details/batmantropicscha00flem/page/n189 165]|isbn=978-0520236066}}</ref> Among microbats, longer snouts are associated with nectar-feeding.<ref name="MacDonald"/> while vampire bats have reduced snouts to accommodate large incisors and canines.<ref name=Greenhall1983>{{cite journal|author1=Greenhall, A.M. |author2=Joermann, G. |author3=Schmidt, U. |year=1983|title= Desmodus rotundus|journal= Mammalian Species|issue=202 |pages=1–6|doi=10.2307/3503895|jstor=3503895 |doi-access=free}}</ref>',
354 => '',
355 => 'Small insect-eating bats can have as many as 38 teeth, while vampire bats have only 20. Bats that feed on hard-shelled insects have fewer but larger teeth with longer canines and more robust lower jaws than species that prey on softer bodied insects. In nectar-feeding bats, the canines are long while the cheek-teeth are reduced. In fruit-eating bats, the cusps of the cheek teeth are adapted for crushing.<ref name="MacDonald"/> The upper incisors of vampire bats lack [[tooth enamel|enamel]], which keeps them razor-sharp.<ref name=Greenhall1983/> The bite force of small bats is generated through [[mechanical advantage]], allowing them to bite through the [[sclerotization|hardened]] armour of insects or the [[Peel (fruit)|skin]] of fruit.<ref>{{cite journal |first1=J. |last1=Senawi |first2=D. |last2=Schmieder |first3=B. |last3=Siemers |first4=T. |last4=Kingston |year=2015 |title=Beyond size – morphological predictors of bite force in a diverse insectivorous bat assemblage from Malaysia |journal=Functional Ecology |volume=29 |issue=11 |pages=1411–1420 |doi=10.1111/1365-2435.12447|doi-access=free |bibcode=2015FuEco..29.1411S }}</ref>',
356 => '',
357 => '===Wings and flight===',
358 => '',
359 => '{{Main|Bat flight|Bat wing development}}',
360 => '',
361 => 'Bats are the only mammals capable of sustained flight, as opposed to [[glide (flight)|gliding]], as in the [[flying squirrel]].<ref name=molecule>{{cite journal |last=Hunter |first=P. |year=2007 |title=The nature of flight: The molecules and mechanics of flight in animals |journal=Science and Society |volume=8 |issue=9 |pages=811–813 |pmid=17767190 |doi=10.1038/sj.embor.7401050 |pmc=1973956}}</ref> The fastest bat, the [[Mexican free-tailed bat]] (''Tadarida brasiliensis''), can achieve a [[ground speed]] of {{convert|160|km/h|mph|-1|abbr=on}}.<ref>{{cite journal |author1=McCracken, G. F. |author2=Safi, K. |author3=Kunz, T. H. |author4=Dechmann, D. K. N. |author5=Swartz, S. M. |author6=Wikelski, M.|title=Airplane tracking documents the fastest flight speeds recorded for bats |journal=Royal Society Open Science |volume=3 |issue=11 |pages=160398 |date=9 November 2016 |doi=10.1098/rsos.160398|pmid=28018618 |bibcode=2016RSOS....360398M |pmc=5180116}}</ref>',
362 => '[[File:Flapping-Tail-Membrane-in-Bats-Produces-Potentially-Important-Thrust-during-Horizontal-Takeoffs-and-pone.0032074.s004.ogv|thumb|left|Little brown bat take off and flight]]',
363 => '',
364 => 'The finger bones of bats are much more flexible than those of other mammals, owing to their flattened cross-section and to low levels of [[calcium]] near their tips.<ref>{{Cite journal|last=Norberg|first=Ulla M.|date=1972|title=Bat wing structures important for aerodynamics and rigidity (Mammalia, Chiroptera)|url=https://doi.org/10.1007/BF00418147|journal=Zeitschrift für Morphologie der Tiere|language=en|volume=73|issue=1|pages=45–61|doi=10.1007/BF00418147|s2cid=38538056|issn=1432-234X}}</ref><ref>{{Cite journal|last1=Torres|first1=Diego A.|last2=Freitas|first2=Mariella B.|last3=da Matta|first3=Sérgio L. P.|last4=Novaes|first4=Rômulo D.|last5=Gonçalves|first5=Reggiani Vilela|date=2019-03-28|title=Is bone loss a physiological cost of reproduction in the Great fruit-eating bat Artibeus lituratus?|journal=PLOS ONE|volume=14|issue=3|pages=e0213781|doi=10.1371/journal.pone.0213781|issn=1932-6203|pmc=6438481|pmid=30921346|bibcode=2019PLoSO..1413781T|doi-access=free}}</ref> The elongation of bat digits, a key feature required for wing development, is due to the [[upregulation]] of [[bone morphogenetic protein]]s (Bmps). During [[embryo|embryonic development]], the gene controlling Bmp signalling, ''[[Bone morphogenetic protein 2|Bmp2]]'', is subjected to increased expression in bat forelimbs{{snd}}resulting in the extension of the manual digits. This crucial genetic alteration helps create the specialized limbs required for powered flight. The relative proportion of extant bat forelimb digits compared with those of Eocene fossil bats have no significant differences, suggesting that bat wing morphology has been conserved for over fifty million years.<ref name=Sears2006>{{cite journal |last=Sears |first=K. E. |author2=Behringer, R. R. |author3=Rasweiler, J. J. |author4=Niswander, L. A. |title=Development of bat flight: Morphologic and molecular evolution of bat wing digits |journal=Proceedings of the National Academy of Sciences |year=2006 |volume=103 |issue=17 |pages=6581–6586 |doi=10.1073/pnas.0509716103 |pmid=16618938 |pmc=1458926 |bibcode=2006PNAS..103.6581S |doi-access=free }}</ref> During flight, the bones undergo [[bending]] and [[shear stress|shearing]] [[stress (mechanics)|stress]]; the bending stresses felt are smaller than in terrestrial mammals, but the shearing stress is larger. The wing bones of bats have a slightly lower breaking stress point than those of birds.<ref>{{cite journal |last=Kirkpatrick |first=S. J. |year=1994 |title=Scale effects on the stresses and safety factors in the wing bones of birds and bats |journal=Journal of Experimental Biology |volume=190 |pages=195–215 |doi=10.1242/jeb.190.1.195 |pmid=7964391}}</ref>',
365 => '',
366 => 'As in other mammals, and unlike in birds, the [[radius (anatomy)|radius]] is the main component of the forearm. Bats have five elongated digits, which all radiate around the wrist. The thumb points forward and supports the [[leading edge]] of the wing, and the other digits support the tension held in the wing membrane. The second and third digits go along the wing tip, allowing the wing to be pulled forward against aerodynamic [[drag (physics)|drag]], without having to be thick as in [[pterosaur]] wings. The fourth and fifth digits go from the wrist to the [[trailing edge]], and repel the bending force caused by air pushing up against the stiff membrane.<ref name=pennycuick/> Due to their flexible joints, bats are more maneuverable and more dexterous than gliding mammals.<ref name=marshall2015>{{cite journal |last1=Marshall |first1=K. L. |last2=Chadha |first2=M. |last3=deSouza |first3=L. A. |last4=Sterbing-D'Angelo |first4=S. J. |last5=Moss |first5=C. F. |last6=Lumpkin |first6=E. A. |year=2015 |title=Somatosensory substrates of flight control in bats |journal=Cell Reports |volume=11 |issue=6 |pages=851–858 |doi=10.1016/j.celrep.2015.04.001 |pmid=25937277 |pmc=4643944}}</ref>',
367 => '[[File:Big-eared-townsend-fledermaus.jpg|thumb|Wing membranes ([[patagium|patagia]]) of [[Townsend's big-eared bat]], ''Corynorhinus townsendii'']]',
368 => '',
369 => 'The wings of bats are much thinner and consist of more bones than the wings of birds, allowing bats to maneuver more accurately than the latter, and fly with more lift and less drag.<ref>{{cite web |author=Brown University |year=2007 |url=https://www.sciencedaily.com/releases/2007/01/070118161402.htm |title=Bats in Flight Reveal Unexpected Aerodynamics |publisher=ScienceDaily |access-date=31 October 2017}}</ref> By folding the wings in toward their bodies on the upstroke, they save 35 percent energy during flight.<ref>{{cite journal|author1=Riskin, D. K. |author2=Bergou, A. |author3=Breuer, K. S. |author4=Swartz, S. M. |year=2012|title=Upstroke wing flexion and the inertial cost of bat flight|journal=Proceedings of the Royal Society B: Biological Sciences|volume=279|issue=1740|pages=2945–2950|doi=10.1098/rspb.2012.0346|pmid=22496186|pmc=3385481}}</ref> The membranes are delicate, tearing easily,<ref name=ideas>{{cite journal |last=Roberts |first=W. C. |year=2006 |title=Facts and ideas from anywhere |journal=Proceedings (Baylor University. Medical Center) |volume=19 |issue=4 |pages=425–434 |pmid=17106509 |pmc=1618737 |doi=10.1080/08998280.2006.11928217 }}</ref> but can regrow, and small tears heal quickly.<ref name=ideas/><ref>{{cite journal |last=Irwin |first=N. |year=1997 |title=Wanted DNA samples from ''Nyctimene'' or ''Paranyctimene Bats'' |journal=The New Guinea Tropical Ecology and Biodiversity Digest |volume=3 |page=10 |url=http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf|url-status=dead|archive-url=https://web.archive.org/web/20080722140449/http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf|archive-date=22 July 2008}}</ref> The surface of the wings is equipped with touch-sensitive receptors on small bumps called [[Merkel cell]]s, also found on human fingertips. These sensitive areas are different in bats, as each bump has a tiny hair in the center, making it even more sensitive and allowing the bat to detect and adapt to changing airflow; the primary use is to judge the most efficient speed at which to fly, and possibly also to avoid [[Stall (fluid mechanics)|stalls]].<ref name=sterbing>{{cite journal |first1=S. |last1=Sterbing-D'Angelo |first2=M. |last2=Chadha |first3=C. |last3=Chiu |first4=B. |last4=Falk |first5=W. |last5=Xian |first6=J. |last6=Barcelo |first7=J. M. |last7=Zook |first8=C. F. |last8=Moss |year=2011 |title=Bat wing sensors support flight control |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=108 |number=27 |pages=11291–11296 |doi=10.1073/pnas.1018740108 |pmc=3131348|bibcode=2011PNAS..10811291S |pmid=21690408|doi-access=free }}</ref> Insectivorous bats may also use tactile hairs to help perform complex maneuvers to capture prey in flight.<ref name=marshall2015/>',
370 => '',
371 => '{{anchor|Skin}}',
372 => 'The [[patagium]] is the wing membrane; it is stretched between the arm and finger bones, and down the side of the body to the hind limbs and tail. This skin membrane consists of [[connective tissue]], [[elastic fibre]]s, [[nerve]]s, [[muscle]]s, and [[blood vessel]]s. The muscles keep the membrane taut during flight.<ref name=Mehlhorn2013>{{cite book |title=Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths |last=Mehlhorn |first=H. |publisher=Springer |year=2013 |isbn=978-3-642-39333-4|pages=2–27}}</ref> The extent to which the tail of a bat is attached to a patagium can vary by species, with some having completely free tails or even no tails.<ref name=MacDonald/> The skin on the body of the bat, which has one layer of [[epidermis]] and [[dermis]], as well as [[hair follicle]]s, [[sweat gland]]s and a fatty subcutaneous layer, is very different from the skin of the wing membrane. Depending on the bat species the presence of [[hair follicle]]s and [[sweat gland]]s will vary in the [[patagium]].<ref>{{Cite journal |last1=Makanya |first1=Andrew N |last2=Mortola |first2=Jacopo P |date=December 2007 |title=The structural design of the bat wing web and its possible role in gas exchange |journal=Journal of Anatomy |volume=211 |issue=6 |pages=687–697 |doi=10.1111/j.1469-7580.2007.00817.x |issn=0021-8782 |pmc=2375846 |pmid=17971117}}</ref> This [[patagium]] is an extremely thin double layer of epidermis; these layers are separated by a [[connective tissue]] center, rich with [[collagen]] and [[elastic fiber]]s. In some bat species sweats glands will be present in between this [[connective tissue]].<ref>{{Cite journal |last1=Greville |first1=Lucas J |last2=Ceballos-Vasquez |first2=Alejandra |last3=Valdizón-Rodríguez |first3=Roberto |last4=Caldwell |first4=John R |last5=Faure |first5=Paul A |date=2018-05-16 |title=Wound healing in wing membranes of the Egyptian fruit bat (Rousettus aegyptiacus) and big brown bat (Eptesicus fuscus) |journal=Journal of Mammalogy |volume=99 |issue=4 |pages=974–982 |doi=10.1093/jmammal/gyy050 |issn=0022-2372|doi-access=free }}</ref> Furthermore, if hair follicles are present this supports the bat in order to adjust sudden flight maneuvers.<ref>{{Cite journal |last1=Sterbing-D'Angelo |first1=Susanne |last2=Chadha |first2=Mohit |last3=Chiu |first3=Chen |last4=Falk |first4=Ben |last5=Xian |first5=Wei |last6=Barcelo |first6=Janna |last7=Zook |first7=John M. |last8=Moss |first8=Cynthia F. |date=2011-07-05 |title=Bat wing sensors support flight control |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=108 |issue=27 |pages=11291–11296 |doi=10.1073/pnas.1018740108 |issn=0027-8424 |pmc=3131348 |pmid=21690408|bibcode=2011PNAS..10811291S |doi-access=free }}</ref><ref>{{Cite journal |last=Turner |first=Marian |date=2011-06-20 |title=Wing hairs help to keep bats in the air |url=https://www.nature.com/articles/news.2011.376 |journal=Nature |language=en |doi=10.1038/news.2011.376 |issn=1476-4687}}</ref> For bat embryos, [[apoptosis]] (programmed cell death) affects only the hindlimbs, while the forelimbs retain webbing between the digits that forms into the wing membranes.{{sfn|Fenton|Simmons|2015|pages=166–167}} Unlike birds, whose stiff wings deliver bending and torsional stress to the shoulders, bats have a flexible wing membrane that can resist only tension. To achieve flight, a bat exerts force inwards at the points where the membrane meets the skeleton, so that an opposing force balances it on the wing edges perpendicular to the wing surface. This adaptation does not permit bats to reduce their wingspans, unlike birds, which can partly fold their wings in flight, radically reducing the wing span and area for the upstroke and for gliding. Hence bats cannot travel over long distances as birds can.<ref name="pennycuick" />',
373 => '',
374 => 'Nectar- and pollen-eating bats can hover, in a similar way to [[hummingbird]]s. The sharp leading edges of the wings can create [[vortex|vortices]], which provide [[Vortex lift|lift]]. The vortex may be stabilized by the animal changing its wing curvatures.<ref>{{cite web |title=Leading Edge Vortex Allows Bats to Stay Aloft, Aerospace Professor Reports |publisher=USC Viterbi School of Engineering |date=29 February 2008 |url=https://viterbi.usc.edu/news/news/2008/leading-edge-vortex.htm}}</ref>',
375 => '',
376 => '===Roosting and gaits===',
377 => '',
378 => '[[File:Group flying dogs hanging in tree Sri Lanka.JPG|thumb|upright=1.3|Group of megabats roosting]]',
379 => '',
380 => 'When not flying, bats hang upside down from their feet, a posture known as roosting.<ref name=fenton1984/> The femurs are attached at the hips in a way that allows them to bend outward and upward in flight. The ankle joint can flex to allow the trailing edge of the wings to bend downwards. This does not permit many movements other than hanging or clambering up trees.<ref name=pennycuick/> Most megabats roost with the head tucked towards the belly, whereas most microbats roost with the neck curled towards the back. This difference is reflected in the structure of the [[cervical vertebra|cervical or neck vertebra]]e in the two groups, which are clearly distinct.<ref name=fenton1984>{{cite journal |last1=Fenton |first1=M. B. |last2=Crerar |first2=L. M. |title=Cervical Vertebrae in Relation to Roosting Posture in Bats |journal=Journal of Mammalogy |year=1984 |volume=65 |issue=3 |pages=395–403 |doi=10.2307/1381085 |jstor=1381085 }}</ref> Tendons allow bats to lock their feet closed when hanging from a roost. Muscular power is needed to let go, but not to grasp a perch or when holding on.{{sfn|Fenton|Simmons|2015|page=78}}',
381 => '',
382 => 'When on the ground, most bats can only crawl awkwardly. A few species such as the [[New Zealand lesser short-tailed bat]] and the [[common vampire bat]] are agile on the ground. Both species make lateral gaits (the limbs move one after the other) when moving slowly but vampire bats move with a bounding gait (all limbs move in unison) at greater speeds, the folded up wings being used to propel them forward. Vampire bat likely evolved these gaits to follow their hosts while short-tailed bats developed in the absence of terrestrial mammal competitors. Enhanced terrestrial locomotion does not appear to have reduced their ability to fly.<ref>{{cite journal |last1=Riskin |first1=D. K. |last2=Parsons |first2=S. |last3=Schutt |first3=W. A. Jr. |last4=Carter |first4=G. G. |last5=Hermanson |first5=J. W. |title=Terrestrial locomotion of the New Zealand short-tailed bat ''Mystacina tuberculata'' and the common vampire bat ''Desmodus rotundus'' |journal=Journal of Experimental Biology|year=2006|volume=209 |issue=9 |pages=1725–1736 |doi=10.1242/jeb.02186 |pmid=16621953 |s2cid=18305396 |url=http://eprints.qut.edu.au/79775/1/79775.pdf}}</ref>',
383 => '',
384 => '===Internal systems===',
385 => '',
386 => 'Bats have an efficient [[circulatory system]]. They seem to make use of particularly strong venomotion, a rhythmic contraction of [[vein|venous]] wall muscles. In most mammals, the walls of the veins provide mainly passive resistance, maintaining their shape as deoxygenated blood flows through them, but in bats they appear to actively support blood flow back to the heart with this pumping action.<ref>{{cite journal |last=Jones |first=T. W. |year=1852 |title=Discovery That the Veins of the Bat's Wing (Which are Furnished with Valves) are Endowed with Rythmical {{sic}} Contractility, and That the Onward Flow of Blood is Accelerated by Each Contraction |jstor=108539 |journal=Philosophical Transactions of the Royal Society of London |volume=142 |pages=131–136 |doi=10.1098/rstl.1852.0011|s2cid=52937127 }}</ref><ref>{{Cite journal |last1=Dongaonkar |first1=R. M. |last2=Quick |first2=C. M. |last3=Vo |first3=J. C. |last4=Meisner |first4=J. K. |last5=Laine |first5=G. A. |last6=Davis |first6=M. J. |last7=Stewart |first7=R. H. |date=15 June 2012 |title=Blood flow augmentation by intrinsic venular contraction in vivo |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=302 |issue=12 |pages=R1436–R1442 |doi=10.1152/ajpregu.00635.2011 |pmc=3378342 |pmid=22513742}}</ref> Since their bodies are relatively small and lightweight, bats are not at risk of blood flow rushing to their heads when roosting.<ref>{{cite web |author=Langley, L. |date=29 August 2015|title=Bats and Sloths Don't Get Dizzy Hanging Upside Down – Here's Why |work=National Geographic |access-date=10 June 2017 |url=http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/|archive-url=https://web.archive.org/web/20150831022930/http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/|url-status=dead|archive-date=31 August 2015}}</ref>',
387 => '',
388 => 'Bats possess a highly adapted [[respiratory system]] to cope with the demands of powered flight, an energetically taxing activity that requires a large continuous throughput of oxygen. In bats, the relative alveolar surface area and pulmonary capillary blood volume are larger than in most other small quadrupedal mammals.<ref>{{Cite journal |title=What it takes to fly: the structural and functional respiratory refinements in birds and bats |url=http://jeb.biologists.org/content/203/20/3045 |journal=Journal of Experimental Biology |year=2000 |pmid=11003817 |pages=3045–3064 |volume=203 |issue=20 |first=J. N. |last=Maina|doi=10.1242/jeb.203.20.3045 |doi-access=free }}</ref> During flight the respiratory cycle has a one-to-one relationship with the wing-beat cycle.<ref>{{cite journal |last1=Suthers |first1=Roderick A. |last2=Thomas |first2=Steven P |last3=Suthers |first3=Barbara A |title=Respiration, Wing-Beat and Ultrasonic Pulse Emission in an Echo-Locating Bat |journal=Journal of Experimental Biology |volume=56 |date=1972 |issue=56 |pages=37–48 |doi=10.1242/jeb.56.1.37 |url=https://jeb.biologists.org/content/56/1/37 |access-date=9 August 2019|doi-access=free }}</ref> Because of the restraints of the mammalian lungs, bats cannot maintain high-altitude flight.<ref name=pennycuick>{{cite book |chapter-url={{google books |plainurl=yes |id=KG86AgWwFEUC |page=136}} |first=C. J. |last=Pennycuick |year=2008 |title=Modelling the Flying Bird |chapter=Bats |publisher=Elsevier |isbn=978-0-12-374299-5 |pages=136–143}}</ref>',
389 => '[[File:Flying fox at botanical gardens in Sydney (cropped).jpg|thumb|upright|The wings are highly vascularized membranes, the larger blood vessels visible against the light.<ref name=benhamo/>]]',
390 => '',
391 => 'It takes a lot of energy and an efficient circulatory system to work the flight muscles of bats. Energy supply to the muscles engaged in flight requires about double the amount compared to the muscles that do not use flight as a means of mammalian locomotion. In parallel to energy consumption, blood oxygen levels of flying animals are twice as much as those of their terrestrially locomoting mammals. As the blood supply controls the amount of oxygen supplied throughout the body, the [[circulatory system]] must respond accordingly. Therefore, compared to a terrestrial mammal of the same relative size, the bat's [[heart]] can be up to three times larger, and pump more blood.<ref name="Jürgens Bartels Bartels 1981 pp. 243–260">{{cite journal | last1=Jürgens | first1=Klaus Dieter | last2=Bartels | first2=Heinz | last3=Bartels | first3=Rut | title=Blood oxygen transport and organ weights of small bats and small non-flying mammals | journal=Respiration Physiology | volume=45 | issue=3 | year=1981 | doi=10.1016/0034-5687(81)90009-8 | pmid=7330485 | pages=243–260}}</ref> Cardiac output is directly derived from heart rate and [[stroke volume]] of the blood;<ref name="Martini 2015">{{cite book | last=Martini | first=Frederic | title=Visual anatomy & physiology | publisher=Pearson | year=2015 | isbn=978-0-321-91874-1 | oclc=857980151 | pages=704–705}}</ref> an active [[microbat]] can reach a heart rate of 1000 [[beats per minute]].<!--<ref name="Kunz1982">{{Cite book |title=Ecology of Bats |last=Kunz |first=Thomas |publisher=Plenum |year=1982 |isbn=978-0-306-40950-9 |pages=MISSING}}</ref>--><ref name="WANG2009">{{cite journal | last1=Wang| first1=LI| last2=Li | first2=Gang | last3=Wang| first3=Jinhong | last4=Ye | first4=Shaohui | last5=Jones | first5=Gareth | last6=Zhang | first6=Shuyi | title=Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera) | journal=Genetics Research | volume=91 | issue=2 | pages=101–109 | year=2009 | doi=10.1017/s0016672309000032 | pmid=19393126 | doi-access=free }}</ref>',
392 => '',
393 => 'With its extremely thin membranous tissue, a bat's wing can significantly contribute to the organism's total gas exchange efficiency.<ref name="Makanya2007">{{Cite journal |last1=Makanya |first1=A. N. |last2=Mortola |first2=J. P. |year=2007 |title=The structural design of the bat wing web and its possible role in gas exchange |journal=Journal of Anatomy |volume=211 |issue=6 |pages=687–697 |doi=10.1111/j.1469-7580.2007.00817.x |pmc=2375846 |pmid=17971117}}</ref> Because of the high energy demand of flight, the bat's body meets those demands by exchanging gas through the patagium of the wing. When the bat has its wings spread it allows for an increase in surface area to volume ratio. The surface area of the wings is about 85% of the total body surface area, suggesting the possibility of a useful degree of gas exchange.<ref name=Makanya2007 /> The subcutaneous vessels in the membrane lie very close to the surface and allow for the diffusion of oxygen and carbon dioxide.<ref>{{Cite journal |last1=Holbrook |first1=K. A. |last2=Odland |first2=G. F. |year=1978 |title=A collagen and elastic network in the wing of the bat |journal=Journal of Anatomy |volume=126 |issue=Pt 1 |pages=21–36 |pmc=1235709 |pmid=649500}}</ref>',
394 => '',
395 => 'The [[digestive system]] of bats has varying adaptations depending on the species of bat and its diet. As in other flying animals, food is processed quickly and effectively to keep up with the energy demand. Insectivorous bats may have certain [[digestive enzyme]]s to better process insects, such as [[chitinase]] to break down [[chitin]], which is a large component of insects.<ref>{{cite journal |first1=S. |last1=Strobel |first2=A. |last2=Roswag |first3=N. I. |last3=Becker |first4=T. E. |last4=Trenczek |first5=J. A. |last5=Encarnação |year=2013 |title=Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase |journal=PLOS ONE|volume=8 |issue=9 |pages=e72770 |doi=10.1371/journal.pone.0072770 |pmid=24019876 |pmc=3760910 |bibcode=2013PLoSO...872770S |doi-access=free }}</ref> Vampire bats, probably due to their diet of blood, are the only vertebrates that do not have the enzyme [[maltase]], which breaks down [[malt sugar]], in their intestinal tract. Nectivorous and frugivorous bats have more maltase and [[sucrase]] enzymes than insectivorous, to cope with the higher sugar contents of their diet.<ref name=schondube01>{{cite journal |last1=Schondube |first1=J. E. |last2=Herrera-M |first2=L. Gerardo |last3=Martínez del Rio |first3=C. |year=2001 |title=Diet and the evolution of digestion and renal function in phyllostomid bats |journal=Zoology |volume=104 |issue=1 |pages=59–73 |url=http://www.uwyo.edu/cmdelrio/site/publications_files/bats,%20isotopes,%20and%20kidneys.pdf |doi=10.1078/0944-2006-00007 |pmid=16351819}}</ref>',
396 => '',
397 => 'The adaptations of the [[kidney]]s of bats vary with their diets. Carnivorous and vampire bats consume large amounts of protein and can output concentrated [[urine]]; their kidneys have a thin cortex and long [[renal papilla]]e. Frugivorous bats lack that ability and have kidneys adapted for [[electrolyte]]-retention due to their low-electrolyte diet; their kidneys accordingly have a thick cortex and very short conical papillae.<ref name="schondube01" /> Bats have higher metabolic rates associated with flying, which lead to an increased respiratory water loss. Their large wings are composed of the highly vascularized membranes, increasing the surface area, and leading to [[cutaneous]] evaporative water loss.<ref name=benhamo>{{Cite journal |last1=Ben-Hamo |first1=Miriam |last2=Muñoz-Garcia |first2=Agustí |last3=Larrain |first3=Paloma |last4=Pinshow |first4=Berry |last5=Korine |first5=Carmi |last6=Williams |first6=Joseph B. |date=2016-06-29 |title=The cutaneous lipid composition of bat wing and tail membranes: a case of convergent evolution with birds |journal=Proceedings of the Royal Society B: Biological Sciences |volume=283 |issue=1833 |pages=20160636 |doi=10.1098/rspb.2016.0636 |pmc=4936036 |pmid=27335420}}</ref> Water helps maintain their [[electrolyte imbalance|ionic balance]] in their blood, [[thermoregulation]] system, and removal of wastes and toxins from the body via urine. They are also susceptible to [[Blood urea nitrogen|blood urea]] poisoning if they do not receive enough fluid.<ref>{{Cite report |last1=Lyons |first1=Rachel |last2=Wimberley |first2=Trish |date=March 2014 |title=Introduction to the Care and Rehabilitation of Microbats |url=http://www.bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf |publisher=Wildcare Australia |version=3.0 |page=12 |access-date=5 May 2018 |archive-date=10 March 2018 |archive-url=https://web.archive.org/web/20180310034326/http://bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf |url-status=dead }}</ref>',
398 => '',
399 => 'The structure of the uterine system in female bats can vary by species, with some having two [[uterine horn]]s while others have a single mainline chamber.{{sfn|Fenton|Simmons|2015|page=164}}',
400 => '',
401 => '===Senses===',
402 => '====Echolocation====',
403 => '',
404 => '{{Main|Animal echolocation#Bats}}',
405 => '{{Listen|filename=Pipistrellus.ogg|title=''Pipistrellus'' pulses|description=Time-expanded recording of ''Pipistrellus pipistrellus'' bat echolocation calls and social call}}',
406 => '{{Listen|filename=Bat feeding buzz.wav|title=Feeding buzz|description=Time-expanded recording of the feeding buzz of a bat homing in on its prey}}',
407 => '',
408 => 'Microbats and a few megabats emit ultrasonic sounds to produce echoes. Sound intensity of these echos are dependent on subglottic pressure. The bats' cricothyroid muscle controls the orientation pulse frequency, which is an important function. This muscle is located inside the larynx and it is the only tensor muscle capable of aiding phonation.<ref>{{cite journal |last1=Suthers |first1=Roderick |last2=Fattu |first2=James |title=Mechanisms of Sound Production by Echolocating Bats |journal=American Zoologist |date=1973 |volume=13 |issue=4 |pages=1215–1226 |doi=10.1093/icb/13.4.1215|doi-access=free }}</ref> By comparing the outgoing pulse with the returning echoes, bats can gather information on their surroundings. This allows them to detect prey in darkness.{{sfn|Fenton|Simmons|2015|pages=82–84}} Some bat calls can reach 140 [[decibels]].<ref>{{cite journal |last1=Surlykke |first1=A. |last2=Elisabeth |first2=K. V. |year=2008 |title=Echolocating bats Cry Out Loud to Detect Their Prey |journal=PLOS ONE|volume=3 |issue=4 |page=e2036 |doi=10.1371/journal.pone.0002036 |pmc=2323577 |bibcode=2008PLoSO...3.2036S |pmid=18446226|doi-access=free }}</ref> Microbats use their [[larynx]] to emit echolocation signals through the mouth or the nose.<ref>{{cite journal|last1=Teeling|first1=E. C.|last2=Madsen|first2=O|last3=Van Den Bussche|first3=R. A.|last4=de Jong|first4=W. W.|last5=Stanhope|first5=M. J.|last6=Springer|first6=M. S.|year=2002|title=Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats|journal=PNAS|volume=99|issue=3|pages=1431–1436|doi=10.1073/pnas.022477199|pmid=11805285|pmc=122208|bibcode=2002PNAS...99.1431T|doi-access=free}}</ref> Microbat calls range in frequency from 14,000 to well over 100,000 Hz, extending well beyond the range of human hearing (between 20 and 20,000 Hz).<ref name=muller2004/> Various groups of bats have evolved fleshy extensions around and above the nostrils, known as [[nose-leaf|nose-leaves]], which play a role in sound transmission.{{sfn|Fenton|Simmons|2015|page=31}}',
409 => '[[File:Animal echolocation.svg|thumb|left|upright=1.3|Principle of bat echolocation: orange is the call and green is the echo.]]',
410 => '',
411 => 'In low-duty cycle echolocation, bats can separate their calls and returning echoes by time. They have to time their short calls to finish before echoes return.<ref name="Jones2007"/> The delay of the returning echoes allows the bat to estimate the range to their prey.<ref name=muller2004/> In high-duty cycle echolocation, bats emit a continuous call and separate pulse and echo in frequency using the [[Doppler effect]] of their motion in flight. The shift of the returning echoes yields information relating to the motion and location of the bat's prey. These bats must deal with changes in the Doppler shift due to changes in their flight speed. They have adapted to change their pulse emission frequency in relation to their flight speed so echoes still return in the optimal hearing range.<ref name="Jones2007">{{cite journal |author1=Jones, G. |author2=Holderied, M. W. |title=Bat echolocation calls: adaptation and convergent evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |year=2007 |pages=905–912 |doi=10.1098/Rspb.2006.0200 |pmid=17251105 |issue=1612 |pmc=1919403}}</ref><ref>{{cite journal|last1=Fenton|first1=M. B.|last2=Faure|first2=P. A.|last3=Ratcliffe|first3=J. M.|year=2012|title=Evolution of high duty cycle echolocation in bats|journal=The Journal of Experimental Biology|volume=215|issue=17|pages=2935–2944|doi=10.1242/jeb.073171|pmid=22875762|s2cid=405317|doi-access=free}}</ref>',
412 => '',
413 => 'In addition to echolocating prey, bat ears are sensitive to sounds made by their prey, such as the fluttering of moth wings. The complex geometry of ridges on the inner surface of bat ears helps to sharply focus echolocation signals, and to passively listen for any other sound produced by the prey. These ridges can be regarded as the acoustic equivalent of a [[Fresnel lens]], and exist in a large variety of unrelated animals, such as the [[aye-aye]], [[lesser galago]], [[bat-eared fox]], [[mouse lemur]], and others.<ref>{{cite journal |doi=10.2307/3546476 |last1=Pavey |first1=C. R. |last2=Burwell |first2=C. J. |year=1998 |title=Bat Predation on Eared Moths: A Test of the Allotonic Frequency Hypothesis |journal=Oikos |volume=81 |issue=1 |pages=143–151 |jstor=3546476 |bibcode=1998Oikos..81..143P }}</ref><ref>{{cite web|url=http://apps.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf|archive-url=https://web.archive.org/web/20200325122845/http://www.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf|url-status=live|archive-date=25 March 2020|title=The Bat's Ear as a Diffraction Grating|first=W. A.|last=Sowell|year=1983|publisher=Air Force Institute of Technology}}</ref><ref>{{cite journal |pmid=19425684 |doi=10.1121/1.3097500 |volume=125 |issue=5 |title=Model predicts bat pinna ridges focus high frequencies to form narrow sensitivity beams |year=2009 |journal= The Journal of the Acoustical Society of America|pages=3454–3459 |bibcode=2009ASAJ..125.3454K |last1=K. |first1=Roman}}</ref> Bats can estimate the elevation of their target using the [[interference pattern]]s from the echoes reflecting from the [[tragus (ear)|tragus]], a flap of skin in the external ear.<ref name=muller2004>{{cite journal |last=Muller |first=R. |year=2004 |title=A numerical study of the role of the tragus in the big brown bat |journal= The Journal of the Acoustical Society of America|volume=116 |pages=3701–3712 |doi=10.1121/1.1815133 |pmid=15658720 |issue=6 |bibcode=2004ASAJ..116.3701M }}</ref>',
414 => '[[File:Bertholdiatrigona.jpg|thumb|The [[Bertholdia trigona|tiger moth]] (''Bertholdia trigona'') can [[echolocation jamming|jam]] bat echolocation.<ref name=corcoran2009/><ref name=hristov2005/>]]',
415 => '',
416 => 'By repeated scanning, bats can mentally construct an accurate image of the environment in which they are moving and of their prey.<ref>{{cite journal |pmid=19282498 |doi=10.1242/jeb.024620 |volume=212 |issue=Pt 7 |title=Acoustic scanning of natural scenes by echolocation in the big brown bat, ''Eptesicus fuscus'' |pmc=2726860 |year=2009 |journal=Journal of Experimental Biology |pages=1011–1020 |last1=Surlykke |first1=A. |last2=Ghose |first2=K. |last3=Moss |first3=C. F.}}</ref> Some species of moth have exploited this, such as the [[Arctiidae|tiger moths]], which produces [[aposematic]] ultrasound signals to warn bats that they are chemically protected and therefore distasteful.<ref name=corcoran2009>{{cite journal|last1=Corcoran |first1=A. J. |first2=J. R. |last2=Barber |first3=W. E. |last3=Conner |s2cid=206520028 |title=Tiger moth jams bat sonar |journal=Science |year=2009 |volume=325 |pages=325–327 |doi=10.1126/science.1174096|issue=5938 |pmid=19608920 |bibcode=2009Sci...325..325C }}</ref><ref name=hristov2005>{{cite journal |last1=Hristov |first1=N. I. |first2=W. E. |last2=Conner |title=Sound strategy: acoustic aposematism in the bat–tiger moth arms race |journal=Naturwissenschaften |year=2005 |volume=92 |pages=164–169 |pmid=15772807 |doi=10.1007/s00114-005-0611-7 |issue=4 |bibcode=2005NW.....92..164H|s2cid=18306198 }}</ref> Moth species including the tiger moth can produce signals to [[Echolocation jamming|jam bat echolocation]]. Many moth species have a hearing organ called a [[tympanal organ|tympanum]], which responds to an incoming bat signal by causing the moth's flight muscles to twitch erratically, sending the moth into random evasive manoeuvres.<ref>{{cite book |first1=J. |last1=Strauß |first2=R. |last2=Lakes-Harlan |series=Animal Signals and Communication |volume=1 |year=2014 |title=Insect Hearing and Acoustic Communication |chapter=Evolutionary and Phylogenetic Origins of Tympanal Hearing Organs in Insects |editor-first=B. |editor-last=Hedwig |publisher=Springer |isbn=978-3-642-40462-7 |doi=10.1007/978-3-642-40462-7_2 |pages=5–26}}</ref><ref>{{cite book |editor1-first=R. R. |editor1-last=Hoy |editor2-first=R. R. |editor2-last=Fay |editor3-first=A. N. |editor3-last=Popper |first=J. H. |last=Fullard |year=1998|title=Comparative Hearing: Insects |chapter=Moth Ears and Bat Calls: Coevolution or Coincidence? |series=Springer Handbook of Auditory Research |publisher=Springer |chapter-url={{google books |plainurl=yes |id=T-3jBwAAQBAJ |pages=279–326}} |isbn=978-1-4612-6828-4}}</ref><ref>{{cite journal |last1=Takanashi |first1=Takuma |last2=Nakano |first2=Ryo |last3=Surlykke |first3=A. |last4=Tatsuta |first4=H. |last5=Tabata |first5=J. |last6=Ishikawa |first6=Y. |last7=Skals |first7=N. |year= 2010|title=Variation in Courtship Ultrasounds of Three Ostrinia Moths with Different Sex Pheromones |journal=PLOS ONE|volume=5 |issue=10 |pages=e13144 |doi=10.1371/journal.pone.0013144|pmid=20957230 |bibcode=2010PLoSO...513144T |pmc=2949388|doi-access=free }}</ref>',
417 => '',
418 => '====Vision====',
419 => '',
420 => 'The eyes of most microbat species are small and poorly developed, leading to poor [[visual acuity]], but no species is blind.<ref>{{cite web |author=Sophasarun, N. |title=Experts debunk bats' bad rap |work=Online extra |publisher=National Geographic |url=http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html |archive-url=https://web.archive.org/web/20071230022439/http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html |url-status=dead |archive-date=30 December 2007 |access-date=14 November 2017}}</ref> Most microbats have [[mesopic vision]], meaning that they can detect light only in low levels, whereas other mammals have [[photopic vision]], which allows colour vision. Microbats may use their vision for orientation and while travelling between their roosting grounds and feeding grounds, as echolocation is effective only over short distances. Some species can detect [[ultraviolet]] (UV). As the bodies of some microbats have distinct coloration, they may be able to discriminate colours.<ref name=molecule/><ref>{{cite journal |first1=B. |last1=Müller |first2=M. |last2=Glösmann |first3=L.|last3=Peichl |first4=G. C. |last4=Knop |first5=C. |last5=Hagemann |first6=J. |last6=Ammermüller |year=2009 |title=Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors |journal=PLOS ONE|volume=4 |issue=7 |pages=e6390 |doi=10.1371/journal.pone.0006390 |pmid=19636375 |pmc=2712075|bibcode=2009PLoSO...4.6390M |doi-access=free }}</ref><ref>{{cite journal|first1=Y.-Y. |last1=Shen |first2=J. |last2=Liu |first3=D. M. |last3=Irwin |first4=Y.-P. |last4=Zhang |year=2010 |title=Parallel and Convergent Evolution of the Dim-Light Vision Gene ''RH1'' in Bats (Order: Chiroptera) |journal=PLOS ONE|volume=5 |issue=1 |pages=e8838 |doi=10.1371/journal.pone.0008838 |pmid=20098620 |pmc=2809114|bibcode=2010PLoSO...5.8838S |doi-access=free }}</ref><ref name=wang2004/>',
421 => '',
422 => 'Megabat species often have eyesight as good as, if not better than, human vision. Their eyesight is adapted to both night and daylight vision, including some colour vision.<ref name=wang2004>{{cite journal |last1=Wang |first1=D. |last2=Oakley |first2=T. |last3=Mower |first3=J. |last4=Shimmin |first4=L. C. |last5=Yim |first5=S. |last6=Honeycutt |first6=R. L. |last7=Tsao |first7=H. |last8=Li |first8=W. H. |year=2004 |title=Molecular evolution of bat color vision genes |journal=Molecular Biology and Evolution |volume=21 |issue=2 |pages=295–302 |doi=10.1093/molbev/msh015 |pmid=14660703|doi-access=free }}</ref>',
423 => '',
424 => '====Magnetoreception====',
425 => '',
426 => 'Microbats make use of [[magnetoreception]], in that they have a high sensitivity to the [[Earth's magnetic field]], as birds do. Microbats use a polarity-based compass, meaning that they differentiate north from south, unlike birds, which use the strength of the magnetic field to differentiate [[latitude]]s, which may be used in long-distance travel. The mechanism is unknown but may involve [[magnetite]] particles.<ref>{{cite journal |first1=Y. |last1=Wang |first2=Y. |last2=Pan |first3=S. |last3=Parsons |first4=M. |last4=Walker |first5=S. |last5=Zhang |year=2007 |title=Bats Respond to Polarity of a Magnetic Field |journal=Proceedings of the Royal Society B: Biological Sciences |volume=274 |issue=1627 |pages=2901–2905 |doi=10.1098/rspb.2007.0904 |pmc=2288691 |pmid=17848365}}</ref><ref>{{cite journal |first1=L.-X. |last1=Tian |first2=Y.-X. |last2=Pan |first3=W. |last3=Metzner |first4=J.-S. |last4=Zhang |first5=B.-F. |last5=Zhang |year=2015 |title=Bats Respond to Very Weak Magnetic Fields |journal=PLOS ONE|volume=10 |issue=4 |pages=e0123205 |doi=10.1371/journal.pone.0123205 |pmid=25922944 |pmc=4414586 |bibcode=2015PLoSO..1023205T|doi-access=free }}</ref>',
427 => '',
428 => '===Thermoregulation===',
429 => '',
430 => '[[File:wiki bat.jpg|thumb|right|upright=1.2|Thermographic image of a bat using trapped air as insulation]]',
431 => '',
432 => 'Most bats are [[homeothermic]] (having a stable body temperature), the exception being the vesper bats (Vespertilionidae), the horseshoe bats (Rhinolophidae), the free-tailed bats (Molossidae), and the bent-winged bats (Miniopteridae), which extensively use [[heterothermy]] (where body temperature can vary).<ref name="Nowack 2017">{{cite journal| last1=Nowack| first1= J.| last2= Stawski| first2= C.| last3= Geiser| first3= F.| date=2017| title= More functions of torpor and their roles in a changing world| journal= Journal of Comparative Physiology B| volume= 187| issue=5–6| pages= 889–897| doi= 10.1007/s00360-017-1100-y| pmid= 28432393| pmc= 5486538}}</ref><ref>{{Cite journal |title=The importance of temporal heterothermy in bats |journal=J Zool |last1=Stawski |first1=C. |volume=292 |pages=86–100 |last2=Willis |first2=C. K. R. |doi=10.1111/jzo.12105 |last3=Geiser |first3=F. |date=2014|issue=2 |doi-access=free }}</ref> Compared to other mammals, bats have a high [[thermal conductivity]]. The wings are filled with blood vessels, and lose body heat when extended. At rest, they may wrap their wings around themselves to trap a layer of warm air. Smaller bats generally have a higher metabolic rate than larger bats, and so need to consume more food in order to maintain homeothermy.{{sfn|Altringham|2011|pages=99–100}}',
433 => '',
434 => 'Bats may avoid flying during the day to prevent overheating in the sun, since their dark wing-membranes absorb solar radiation. Bats may not be able to dissipate heat if the ambient temperature is too high;<ref>{{cite journal |first1=C. C. |last1=Voigt |first2=D. |last2=Lewanzik |year=2011 |title=Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats |journal=Proceedings of the Royal Society B: Biological Sciences |volume=278 |issue=1716 |pages=2311–2317 |doi=10.1098/rspb.2010.2290 |pmc=3119008 |pmid=21208959}}</ref> they use saliva to cool themselves in extreme conditions.<ref name=pennycuick/> Among megabats, the flying fox ''[[Pteropus hypomelanus]]'' uses saliva and wing-fanning to cool itself while roosting during the hottest part of the day.<ref name="Ochoa-AcuñaKunz1999">{{cite journal |last1=Ochoa-Acuña |first1=H. |last2=Kunz |first2=T.H. |title=Thermoregulatory behavior in the small island flying fox, ''Pteropus hypomelanus'' (Chiroptera: Pteropodidae) |journal=Journal of Thermal Biology |volume=24 |issue=1 |year=1999 |pages=15–20 |doi=10.1016/S0306-4565(98)00033-3|citeseerx=10.1.1.581.38 }}</ref> Among microbats, the [[Yuma myotis]] (''Myotis yumanensis''), the Mexican free-tailed bat, and the [[pallid bat]] (''Antrozous pallidus'') cope with temperatures up to {{cvt|45|C|F}} by panting, salivating, and licking their fur to promote evaporative cooling; this is sufficient to dissipate twice their metabolic heat production.<ref name="LichtLeitner1967">{{cite journal |last1=Licht |first1=Paul |last2=Leitner |first2=Philip |title=Physiological responses to high environmental temperatures in three species of microchiropteran bats |journal=Comparative Biochemistry and Physiology |volume=22 |issue=2 |year=1967 |pages=371–387 |doi=10.1016/0010-406X(67)90601-9}}</ref>',
435 => '',
436 => 'Bats also possess a system of [[sphincter]] valves on the arterial side of the vascular network that runs along the edge of their wings. When fully open, these allow oxygenated blood to flow through the [[capillary]] network across the wing membrane; when contracted, they [[shunt (medical)|shunt]] flow directly to the veins, bypassing the wing capillaries. This allows bats to control how much heat is exchanged through the flight membrane, allowing them to release heat during flight. Many other mammals use the capillary network in oversized ears for the same purpose.<ref>{{cite book |chapter-url={{google books|plainurl=yes|id=gI-Sly7oq7QC|page=43}} |chapter=The Circulatory and Respiratory Systems |title=The Biology of Bats |last=Neuweiler |first=Gerhard |year=2000 |publisher=Oxford University Press |isbn=978-0-1950-9951-5 |pages=43–62}}</ref>',
437 => '',
438 => '====Torpor====',
439 => '',
440 => '[[File:Tri-colored bat in torpor.JPG|thumb|upright|A [[tricoloured bat]] (''Perimyotis subflavus'') in [[torpor]]]]',
441 => '',
442 => '[[Torpor]], a state of decreased activity where the body temperature and [[metabolism]] decreases, is especially useful for bats, as they use a large amount of energy while active, depend upon an unreliable food source, and have a limited ability to store fat. They generally drop their body temperature in this state to {{convert|6|–|30|C|F}}, and may reduce their energy expenditure by 50 to 99%.<ref>{{cite journal |last1=Geiser |first1=F. |last2=Stawski |first2=C. |year=2011 |title=Hibernation and Torpor in Tropical and Subtropical Bats in Relation to Energetics, Extinctions, and the Evolution of Endothermy |journal=Integrative and Comparative Biology |volume=51 |issue=3 |pages=337–338 |doi=10.1093/icb/icr042 |pmid=21700575|doi-access= }}</ref> Tropical bats may use it to avoid predation, by reducing the amount of time spent on foraging and thus reducing the chance of being caught by a predator.<ref>{{cite journal |first1=C. |last1=Stawski |first2=F.|last2=Geiser|year=2010|title=Fat and Fed: Frequent Use of Summer Torpor in a Subtropical Bat |journal=Naturwissenschaften |volume=97|issue=1|pages=29–35 |doi=10.1007/s00114-009-0606-x |pmid=19756460 |bibcode=2010NW.....97...29S|s2cid=9499097 }}</ref> Megabats were generally believed to be homeothermic, but three species of small megabats, with a mass of about {{convert|50|g|oz|frac=4|abbr=off}}, have been known to use torpor: the [[common blossom bat]] (''Syconycteris australis''), the [[long-tongued nectar bat]] (''Macroglossus minimus''), and the [[eastern tube-nosed bat]] (''Nyctimene robinsoni''). Torpid states last longer in the summer for megabats than in the winter.<ref>{{cite book |url={{google books|plainurl=yes|id=nA0TDAAAQBAJ|page=14}} |first1=A. |last1=Zubaid |first2=G. F. |last2=McCracken |first3=T. |last3=Kunz |year=2006 |title=Functional and Evolutionary Ecology of Bats |publisher=Oxford University Press |pages=14–16 |isbn=978-0-19-515472-6}}</ref>',
443 => '',
444 => 'During [[hibernation]], bats enter a torpid state and decrease their body temperature for 99.6% of their hibernation period; even during periods of arousal, when they return their body temperature to normal, they sometimes enter a shallow torpid state, known as "heterothermic arousal".<ref>{{cite journal |first=K. |last=Knight |year=2012 |title=Bats Use Torpor to Minimise Costs |journal=Journal of Experimental Biology |volume=215 |issue=12 |pages=iii |doi=10.1242/jeb.074823|doi-access=free }}</ref> Some bats [[aestivation|become dormant during higher temperatures]] to keep cool in the summer months.<ref>{{cite journal |first1=A. |last1=Bondarenco |first2=G. |last2=Körtner |first3=F. |last3=Geiser |year=2016 |title=How to Keep Cool in a Hot Desert: Torpor in Two Species of Free-Ranging Bats in Summer |journal=Temperature |volume=6 |issue=3 |pages=476–483 |doi=10.1080/23328940.2016.1214334 |pmc=5079220 |pmid=28349087}}</ref>',
445 => '',
446 => 'Heterothermic bats during long migrations may fly at night and go into a torpid state roosting in the daytime. Unlike migratory birds, which fly during the day and feed during the night, nocturnal bats have a conflict between travelling and eating. The energy saved reduces their need to feed, and also decreases the duration of migration, which may prevent them from spending too much time in unfamiliar places, and decrease predation. In some species, pregnant individuals may not use torpor.<ref>{{cite journal |first1=L. P. |last1=McGuire |first2=K. A. |last2=Jonassen |first3=C. G. |last3=Guglielmo|year=2014 |title=Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy |journal=PLOS ONE|volume=9 |issue=12 |pages=e115724 |doi=10.1371/journal.pone.0115724 |pmid=25551615|pmc=4281203 |bibcode=2014PLoSO...9k5724M|doi-access=free }}</ref><ref>{{cite journal |first1=I. M. |last1=Hamilton |first2=R. M. R. |last2=Barclay |year=1994 |title=Patterns of daily torpor and day-roost selection by male and female big brown bats (''Eptesicus fuscus'') |journal=Canadian Journal of Zoology |volume=72 |issue=4 |pages=744 |doi=10.1139/z94-100|url=https://zenodo.org/record/8204807 }}</ref>',
447 => '',
448 => '===Size===',
449 => '',
450 => 'The smallest bat is [[Kitti's hog-nosed bat]] (''Craseonycteris thonglongyai''), which is {{convert|29|–|34|mm|in|frac=8|abbr=on}} long with a {{convert|150|mm|in|frac=2|adj=on}} wingspan and weighs {{convert|2|–|2.6|g|oz|frac=32|abbr=on}}.<ref name=Edge>{{cite web |url=http://www.edgeofexistence.org/mammals/species_info.php?id=49 |title=Bumblebee bat (''Craseonycteris thonglongyai'') |work=[[EDGE Species]] |access-date=10 April 2008 |archive-date=19 August 2016 |archive-url=https://web.archive.org/web/20160819233333/http://www.edgeofexistence.org/mammals/species_info.php?id=49 |url-status=dead }}</ref> It is also arguably the smallest [[extant taxon|extant]] species of mammal, next to the [[Etruscan shrew]].<ref>{{cite web |title=Kitti's Hog-Nosed Bat Is World's Smallest Mammal |date=3 December 2012 |publisher=SciTechDaily |url=https://scitechdaily.com/kittis-hog-nosed-bat-is-worlds-smallest-mammal/ |access-date=1 November 2017}}</ref> The largest bats are a few species of ''[[Pteropus]]'' megabats and the [[giant golden-crowned flying fox]], (''Acerodon jubatus''), which can weigh {{convert|1.6|kg|lb|frac=4|abbr=on}} with a wingspan of {{convert|1.7|m|ftin|abbr=on}}.<ref>Nowak, R. M., editor (1999). ''Walker's Mammals of the World.'' Vol. 1. 6th edition. pp. 264–271. {{ISBN|0-8018-5789-9}}</ref> Larger bats tend to use lower frequencies and smaller bats higher for echolocation; high-frequency echolocation is better at detecting smaller prey. Small prey may be absent in the diets of large bats as they are unable to detect them.<ref name=gonsalves>{{cite journal |first1=L. |last1=Gonsalves |first2=B. |last2=Bicknell |first3=B.|last3=Law |first4=C. |last4=Webb |first5=V. |last5=Monamy |year=2013 |title=Mosquito Consumption by Insectivorous Bats: Does Size Matter? |journal=PLOS ONE|volume=8 |issue=10 |pages=e77183 |doi=10.1371/journal.pone.0077183 |pmid=24130851 |pmc=3795000 |bibcode=2013PLoSO...877183G|doi-access=free }}</ref> The adaptations of a particular bat species can directly influence what kinds of prey are available to it.<ref>{{cite journal |first1=D. K. N. |last1=Dechmann |first2=K. |last2=Safi |first3=M. J.|last3=Vonhof |year=2006 |title=Matching Morphology and Diet in the Disc-Winged Bat ''Thyroptera tricolor'' (Chiroptera) |journal=Journal of Mammalogy |volume=87 |issue=5 |pages=1013–1019 |doi=10.1644/05-MAMM-A-424R2.1|doi-access=free }}</ref>',
451 => '',
452 => '==Ecology==',
453 => '',
454 => '[[File:Common tent-making bats.JPG|thumb|left|[[Tent-making bat]]s (''Uroderma bilobatum'') in Costa Rica]]',
455 => '',
456 => 'Flight has enabled bats to become one of the most widely distributed groups of mammals.<ref>{{cite journal |last1=Thomas |first1=S. P. |last2=Suthers |first2=R. A. |year=1972 |title=Physiology and energetics of bat flight |journal=Journal of Experimental Biology |volume=57 |issue=2 |pages=317–335 |doi=10.1242/jeb.57.2.317 |url=http://jeb.biologists.org/content/jexbio/57/2/317.full.pdf}}</ref> Apart from the Arctic, the Antarctic and a few isolated oceanic islands, bats exist in almost every habitat on Earth.<ref>{{cite web |title=Bats of the World |url=http://www.bats.org.uk/pages/bats_of_the_world.html |publisher=Bat Conservation Trust |access-date=16 January 2011',
457 => ' |archive-url=https://web.archive.org/web/20110105143810/http://www.bats.org.uk/pages/bats_of_the_world.html |archive-date=5 January 2011 |url-status=live}}</ref> Tropical areas tend to have more species than temperate ones.{{sfn|Fenton|Simmons|2015|pages=32}} Different species select different habitats during different seasons, ranging from seasides to mountains and deserts, but they require suitable roosts. Bat roosts can be found in hollows, crevices, foliage, and even human-made structures, and include "tents" the bats construct with leaves.<ref>{{cite book |title=Grzimek's Animal Life Encyclopedia: Vol 13 Mammals II |year=2003 |edition=2nd |page=311 |isbn=978-0-7876-5362-0}}</ref> Megabats generally roost in trees.{{sfn|Altringham|2011|page=21}} Most microbats are [[Nocturnality|nocturnal]]<ref name="bats">{{cite web |url=http://www.si.edu/Encyclopedia_SI/nmnh/batfacts.htm |publisher=Smithsonian Institution |title=The Art and Science of Bats|date=7 December 2010}}</ref> and megabats are typically [[Diurnal cycle|diurnal]] or [[crepuscular]].<ref name="Schwab"/><ref>{{cite book |author=Alexander, D. E. |year=2015 |title=On the Wing: Insects, Pterosaurs, Birds, Bats and the Evolution of Animal Flight |publisher=Oxford University Press |page=137 |isbn=978-0199996773}}</ref> Microbats are known to exhibit diurnal behaviour in temperate regions during summer when there is insufficient night time to forage,<ref>{{cite journal |last1=Speakman |first1=J. R. |title=The function of daylight flying in British bats |journal=Journal of Zoology |date=1990 |volume=220 |issue=1 |pages=101–113 |doi=10.1111/j.1469-7998.1990.tb04296.x}}</ref><ref>{{cite journal |last1=Speakman |first1=J. R. |last2=Rydell |first2=J. |last3=Webb |first3=P. I. |last4=Hayes |first4=J. P. |last5=Hays |first5=G. C. |last6=Hulbert |first6=I. a. R. |last7=McDevitt |first7=R. M. |title=Activity patterns of insectivorous bats and birds in northern Scandinavia (69° N), during continuous midsummer daylight |journal=Oikos |date=2000 |volume=88 |issue=1 |pages=75–86 |doi=10.1034/j.1600-0706.2000.880109.x|bibcode=2000Oikos..88...75S }}</ref> and in areas where there are few avian predators during the day.<ref>{{cite journal |last1=Chua |first1=Marcus A. H. |last2=Aziz |first2=Sheema Abdul |title=Into the light: atypical diurnal foraging activity of Blyth's horseshoe bat, Rhinolophus lepidus (Chiroptera: Rhinolophidae) on Tioman Island, Malaysia |journal=Mammalia |date=19 December 2018 |volume=83 |issue=1 |pages=78–83 |doi=10.1515/mammalia-2017-0128 |s2cid=90531252 |doi-access=free }}</ref><ref>{{cite journal |last1=Moore |first1=N. W. |title=The diurnal flight of the Azorean bat (Nyctalus azoreum) and the avifauna of the Azores |journal=Journal of Zoology |date=1975 |volume=177 |issue=4 |pages=483–486 |doi=10.1111/j.1469-7998.1975.tb02248.x}}</ref>',
458 => '',
459 => 'In temperate areas, some microbats [[Animal migration|migrate]] hundreds of kilometres to winter hibernation dens;{{sfn|Fenton|2001|pages=60–62}} others pass into torpor in cold weather, rousing and feeding when warm weather allows insects to be active.{{sfn|Fenton|2001|pages=93–94}} Others retreat to caves for winter and hibernate for as much as six months.{{sfn|Fenton|2001|pages=93–94}} Microbats rarely fly in rain; it interferes with their echolocation, and they are unable to hunt.<ref>{{cite web |author=Wolchover, N. |date=5 May 2011 |title=Why Bats Hate Rain |publisher=LiveScience |url=https://www.livescience.com/33258-bats-hate-rain.html |access-date= 19 December 2017}}</ref>',
460 => '',
461 => '===Food and feeding===',
462 => '[[File:Microbats' hunting.ogv|thumb|Bats feeding on insects over a lake]]',
463 => 'Different bat species have different diets, including insects, nectar, pollen, fruit and even vertebrates.{{sfn|Fenton|Simmons|2015|pages=104–107}} Megabats are mostly fruit, nectar and pollen eaters.<ref name="Schwab">{{cite journal |author1=Schwab, I. R. |author2=Pettigrew, J. |year=2005 |title=A choroidal sleight of hand |journal=British Journal of Ophthalmology |volume=89 |issue=11 |page=1398 |doi=10.1136/bjo.2005.077966|pmid=16267906 |pmc=1772916 }}</ref> Due to their small size, high-metabolism and rapid burning of energy through flight, bats must consume large amounts of food for their size. Insectivorous bats may eat over 120 percent of their body weight per day, while frugivorous bats may eat over twice their weight.{{sfn|Fenton|Simmons|2015|page=116}} They can travel significant distances each night, exceptionally as much as {{convert|38.5|km|mi|frac=2|abbr=on}} in the spotted bat (''[[Euderma maculatum]]''), in search of food.<ref>{{cite journal |last1=Rabe |first1=M. J.|display-authors=et al |title=Long Foraging Distance for a Spotted Bat (Euderma Maculatum) in Northern Arizona |journal=The Southwestern Naturalist |date=June 1998 |volume=43 |issue=2 |pages=266–269 |jstor=30055364 }}</ref> Bats use a variety of hunting strategies.<ref name=gonsalves/> Bats get most of their water from the food they eat; many species also drink from water sources like lakes and streams, flying over the surface and dipping their tongues into the water.{{sfn|Fenton|Simmons|2015|pages=76}}',
464 => '',
465 => 'The Chiroptera as a whole are in the process of losing the ability to synthesise [[vitamin C]].<ref name="pmid22069493">{{cite journal |year=2011 |title=Recent loss of vitamin C biosynthesis ability in bats |journal=PLOS ONE|volume=6 |issue=11 |pages=e27114 |bibcode=2011PLoSO...627114C |doi=10.1371/journal.pone.0027114 |pmc=3206078 |pmid=22069493 |last1=Cui |first1=J. |last2=Yuan |first2= X. |last3=Wang |first3=L. |last4=Jones |first4= G. |last5= Zhang |first5=S.|doi-access=free }}</ref> In a test of 34 bat species from six major families, including major insect- and fruit-eating bat families, all were found to have lost the ability to synthesise it, and this loss may derive from a common bat ancestor, as a single mutation.<ref>{{cite journal |author1=Jenness, R. |author2=Birney, E. |author3=Ayaz, K. |year=1980 |title=Variation of L-gulonolactone oxidase activity in placental mammals |journal=Comparative Biochemistry and Physiology B |volume=67 |issue=2 |pages=195–204 |doi=10.1016/0305-0491(80)90131-5}}</ref>{{efn|Earlier reports that only fruit bats were deficient were based on smaller samples.<ref name="pmid21037206"/>}} At least two species of bat, the frugivorous bat (''Rousettus leschenaultii'') and the insectivorous bat (''Hipposideros armiger''), have retained their ability to produce vitamin C.<ref name="pmid21037206">{{cite journal |author1=Cui, J. |author2=Pan, Y. H. |author3=Zhang, Y. |author4=Jones, G. |author5=Zhang, S. |title=Progressive pseudogenization: vitamin C synthesis and its loss in bats |journal=Mol. Biol. Evol. |volume=28 |issue=2 |pages=1025–31 |year=2011 |pmid=21037206 |doi=10.1093/molbev/msq286|doi-access=free }}</ref>',
466 => '',
467 => '====Insects====',
468 => '',
469 => 'Most microbats, especially in temperate areas, prey on insects.{{sfn|Fenton|Simmons|2015|pages=104–107}} The diet of an insectivorous bat may span many species,{{sfn|Fenton|Simmons|2015|pages=108–110}} including [[flies]], [[mosquito]]s, [[beetle]]s, moths, [[grasshopper]]s, [[Cricket (insect)|cricket]]s, [[termite]]s, [[bee]]s, [[wasp]]s, [[mayflies]] and [[caddisflies]].<ref name="MacDonald">{{Cite book |author=Jones, G. |contribution=Bats |year=2001 |title=The Encyclopedia of Mammals |edition=2nd |editor=MacDonald, D. |publisher=Oxford University Press |pages=754–775 |isbn=978-0-7607-1969-5}}</ref><ref name="Wray Jusino Banik Palmer 2018">{{cite journal | last1=Wray | first1=Amy K. | last2=Jusino | first2=Michelle A. | last3=Banik | first3=Mark T. | last4=Palmer | first4=Jonathan M. | last5=Kaarakka | first5=Heather | last6=White | first6=J. Paul | last7=Lindner | first7=Daniel L. | last8=Gratton | first8=Claudio | last9=Peery | first9=M Zachariah | title=Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats | journal=Journal of Mammalogy | volume=99 | issue=3 | pages=668–674 | year=2018 | doi=10.1093/jmammal/gyy044 | doi-access=free }}</ref><ref>{{cite journal |last1=Patriquin |first1=Krista J |last2=Guy |first2=Cylita |last3=Hinds |first3=Joshua |last4=Ratcliffe |first4=John M |title=Male and female bats differ in their use of a large urban park |journal=Journal of Urban Ecology |date=1 January 2019 |volume=5 |issue=1 |pages=juz015 |doi=10.1093/jue/juz015 |url=https://academic.oup.com/jue/article/5/1/juz015/5572591 |access-date=13 December 2020|doi-access=free }}</ref> Large numbers of Mexican free-tailed bats (''Tadarida brasiliensis'') fly hundreds of metres above the ground in central Texas to feed on migrating moths.<ref>{{cite journal |pmid=21669777 |year=2008 |last1=McCracken |first1=G. F. |title=Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: Links to migratory insect populations |journal=Integrative and Comparative Biology |volume=48 |issue=1 |pages=107–118 |last2=Gillam |first2=E. H. |last3=Westbrook |first3=J. K. |last4=Lee |first4=Y. F. |last5=Jensen |first5=M. L. |last6=Balsley |first6=B. B. |doi=10.1093/icb/icn033|doi-access=free }}</ref> Species that hunt insects in flight, like the [[little brown bat]] (''Myotis lucifugus''), may catch an insect in mid-air with the mouth, and eat it in the air or use their tail membranes or wings to scoop up the insect and carry it to the mouth.<ref>{{cite web |title=Little Brown Bat |publisher=Penn State University |url=http://www.psu.edu/dept/nkbiology/naturetrail/speciespages/little_brown_bat.html|access-date=13 September 2017}}</ref>{{sfn|Fenton|Simmons|2015|page=120}} The bat may also take the insect back to its roost and eat it there.<ref>{{cite journal |last1=Fitt |first1=G. P. |year=1989 |title=The ecology of Heliothis species in relation to agro-ecosystems |journal=Annual Review of Entomology |volume=34 |pages=17–52 |doi=10.1146/annurev.ento.34.1.17}}</ref> Slower moving bat species, such as the [[brown long-eared bat]] (''Plecotus auritus'') and many horseshoe bat species, may take or [[Bat flight#Gleaning|glean]] insects from vegetation or hunt them from perches.<ref name="MacDonald"/> Insectivorous bats living at high latitudes have to consume prey with higher energetic value than tropical bats.<ref>{{cite journal|last1=Boyles |first1=J. G. |last2=McGuire |first2=L. P. |last3=Boyles |first3=E. |last4=Reimer |first4=J. P. |last5=Brooks |first5=C. A. |last6=Rutherford |first6=R. W. |last7=Rutherford |first7=T. A. |last8=Whitaker |first8=J. O. Jr.|last9=McCracken |first9=G. F. |year=2016 |title=Physiological and behavioral adaptations in bats living at high latitudes |journal=Physiology and Behavior |volume=165 |pages=322–327 |doi=10.1016/j.physbeh.2016.08.016|pmid=27542518 |s2cid=25361258 }}</ref>',
470 => '',
471 => '====Fruit and nectar====',
472 => '',
473 => '[[File:Rousettus aegyptiacus.jpg|thumb|left|An [[Egyptian fruit bat]] (''Rousettus aegyptiacus'') carrying a [[Ficus|fig]]]]',
474 => '',
475 => 'Fruit eating, or frugivory, is found in both major suborders. Bats prefer ripe fruit, pulling it off the trees with their teeth. They fly back to their roosts to eat the fruit, sucking out the juice and spitting the seeds and pulp out onto the ground. This helps disperse the seeds of these fruit trees, which may take root and grow where the bats have left them, and many species of plants depend on bats for [[seed dispersal]].<ref>{{cite web |author1=Simmons, N. B. |author2=Voss, R. S. |author3=Mori, S. A. |title=Bats as Dispersers of Plants in the Lowland Forests of Central French Guiana |publisher=New York Botanical Garden |access-date=14 September 2017 |url=https://www.nybg.org/botany/tlobova/mori/batsplants/batdispersal/batdispersal_frameset.htm}}</ref>{{sfn|Fenton|Simmons|2015|page=115}} The [[Jamaican fruit bat]] (''Artibeus jamaicensis'') has been recorded carrying fruits weighing {{convert|3|-|14|g|oz|frac=16|abbr=on}} or even as much as {{convert|50|g|oz|frac=4|abbr=on}}.<ref name=Ortega2001>{{cite journal |last1=Ortega |first1=J. |last2=Castro-Arellano |first2=I. |year=2001 |title=''Artibeus jamaicensis'' |journal=Mammalian Species|pages=1–9 |issue=662 |doi=10.1644/1545-1410(2001)662<0001:aj>2.0.co;2|s2cid=198969258 }}</ref>',
476 => '',
477 => 'Nectar-eating bats have acquired specialised adaptations. These bats possess long muzzles and long, extensible [[tongue]]s covered in fine bristles that aid them in feeding on particular flowers and plants.{{sfn|Fenton|Simmons|2015|page=115}}<ref name="NGtongue"/> The [[tube-lipped nectar bat]] (''Anoura fistulata'') has the longest tongue of any mammal relative to its body size. This is beneficial to them in terms of pollination and feeding. Their long, narrow tongues can reach deep into the long cup shape of some flowers. When the tongue retracts, it coils up inside the rib cage.<ref name="NGtongue">{{cite web |url=http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html|title=Photo in the News: Bat Has Longest Tongue of Any Mammal |access-date=18 June 2007 |last=Chamberlain |first=T. |date=6 December 2006 |work=National Geographic News |publisher=National Geographic Society |quote=''A. fistulata'' (shown lapping sugar water from a tube) has the longest tongue, relative to body length, of any mammal{{snd}}and now scientists think they know why. |archive-url=https://web.archive.org/web/20070606114143/http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html |archive-date=6 June 2007 |url-status=dead}}</ref> Because of these features, nectar-feeding bats cannot easily turn to other food sources in times of scarcity, making them more prone to extinction than other types of bat.<ref>{{cite journal |last2=Santos-Del-Prado |first2=K. |last3=Arita |first3=H.T. |year=1999 |title=Conservation Biology of Nectar-Feeding Bats in Mexico |journal=Journal of Mammalogy |volume=80 |issue=1 |pages=31–41 |doi=10.2307/1383205|last1=Arita|first1=H. T.|jstor=1383205 |doi-access= }}</ref><ref>{{cite journal |last2=Hobson |first2=K. A. |last3=Adriana |first3=M. A. |last4=Daniel |first4=E. B. |last5=Sanchez-Corero |first5=V. |last6=German |first6=M. C. |year=2001|title=The Role of Fruits and Insects in the Nutrition of Frugivorous Bats: Evaluating the Use of Stable Isotope Models |journal=Biotropica |volume=33 |issue=3 |pages=520–528 |doi=10.1111/j.1744-7429.2001.tb00206.x |last1=Gerardo |first1=H.|bibcode=2001Biotr..33..520H |s2cid=247675112 }}</ref> Nectar feeding also aids a variety of plants, since these bats serve as [[pollinator]]s, as pollen gets attached to their fur while they are feeding. Around 500 species of flowering plant rely on bat pollination and thus tend to open their flowers at night.{{sfn|Fenton|Simmons|2015|page=115}} Many rainforest plants depend on bat pollination.<ref>{{cite journal |last1=Hodgkison |first1=R. |last2=Balding |first2=S. T. |last3=Zuibad |first3=A. |last4=Kunz |first4=T. H. |year=2003 |title=Fruit Bats (Chiroptera: Pteropodidae) as Seed Dispersers and Pollinators in a Lowland Malaysian Rain Forest |journal=Biotropica |volume=35 |issue=4 |pages=491–502 |doi=10.1111/j.1744-7429.2003.tb00606.x|bibcode=2003Biotr..35..491H |s2cid=86327074 }}</ref>',
478 => '',
479 => '====Vertebrates====',
480 => '',
481 => '[[File:GreaterNoctule.JPG|thumb|upright|The [[greater noctule bat]] (''Nyctalus lasiopterus'') uses its large teeth to catch birds.<ref name=popa/>]]',
482 => '',
483 => 'Some bats prey on other vertebrates, such as fish, frogs, lizards, birds and mammals.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|page=107}} The [[fringe-lipped bat]] (''Trachops cirrhosus,'') for example, is skilled at catching frogs. These bats locate large groups of frogs by tracking their mating calls, then plucking them from the surface of the water with their sharp canine teeth.<ref>{{cite journal |author1=Cramer, M. J. |author2=Wilig, M. R. |author3=Jones, C. |year=2001 |title=Trachops cirrhosus|journal=Mammalian Species |issue=656 |pages=1–6|doi=10.1644/1545-1410(2001)656<0001:TC>2.0.CO;2 |s2cid=198968973 }}</ref> The [[greater noctule bat]] can catch birds in flight.<ref name=popa>{{cite journal |first1=A. G. |last1=Popa-Lisseanu |first2=A. |last2=Delgado-Huertas |first3=M. G. |last3=Forero |first4=A. |last4=Rodríguez |first5=R. |last5=Arlettaz |first6=C. |last6=Ibáñez |year=2007 |title=Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds |journal=PLOS ONE|volume=2 |issue=2 |pages=e205 |doi=10.1371/journal.pone.0000205 |pmid=17299585 |pmc=1784064 |bibcode=2007PLoSO...2..205P |doi-access=free }}</ref> Some species, like the greater bulldog bat (''[[Noctilio leporinus]]'') hunt fish. They use echolocation to detect small ripples on the water's surface, swoop down and use specially enlarged claws on their hind feet to grab the fish, then take their prey to a feeding roost and consume it.<ref name="Schnitzler 1994">{{cite journal|author1=Schnitzler, H.-U. |author2=Kalko, E. K. V. |author3=Kaipf, I. |author4=Grinnell, A. D. |year=1994 |title=Fishing and Echolocation Behavior of the Greater Bulldog Bat, ''Noctilio leporinus'', in the Field |journal=Behavioral Ecology and Sociobiology |volume=35 |issue=5 |pages=327–345 |doi=10.1007/BF00184422|s2cid=23782948 }}</ref> At least two species of bat are known to feed on other bats: the [[spectral bat]] (''Vampyrum spectrum''), and the [[ghost bat]] (''Macroderma gigas'').{{sfn|Fenton|2001|pages=4–5}}',
484 => '',
485 => '====Blood====',
486 => '',
487 => '[[File:Desmo-boden (cropped).jpg|thumb|The [[common vampire bat]] (''Desmodus rotundus'') feeds on blood ([[hematophagy]]).]]',
488 => '',
489 => 'A few species, specifically the common, [[white-winged vampire bat|white-winged]], and [[Hairy-legged vampire bat|hairy-legged]] vampire bats, feed only on animal blood ([[hematophagy]]). The common vampire bat typically feeds on large mammals such as [[cattle]]; the hairy-legged and white-winged vampires feed on birds.<ref>{{cite book |author=Greenhall, A. M. |year=1961 |title=Bats in Agriculture |page=8 |publisher=A Ministry of Agriculture Publication}}</ref> Vampire bats target sleeping prey and can detect deep breathing.{{sfn|Fenton|Simmons|2015|page=119}} Heat sensors in the nose help them to detect blood vessels near the surface of the skin.<ref name="Wilkinson 1990">{{cite journal |author=Wilkinson, G. |year=1990 |title=Food Sharing in Vampire Bats |url=http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf |journal=Scientific American |volume=262 |issue=21 |pages=76–82 |doi=10.1038/scientificamerican0290-76 |bibcode=1990SciAm.262b..76W |access-date=19 December 2017 |archive-date=21 September 2020 |archive-url=https://web.archive.org/web/20200921025300/http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf |url-status=dead }}</ref> They pierce the animal's skin with their teeth, biting away a small flap,<ref name="Nowak 1991">{{cite book |author=Nowak, R. M. |year=1991 |title=Walker's Mammals of the World |page=[https://archive.org/details/walkersmammalsof01nowa/page/1629 1629] |publisher=Johns Hopkins Press |isbn=978-0-8018-3970-2 |url-access=registration |url=https://archive.org/details/walkersmammalsof01nowa/page/1629 }}</ref> and lap up the blood with their tongues, which have lateral grooves adapted to this purpose.<ref>{{cite web|title=Vampire Bats – The Good, the Bad, and the Amazing|publisher=Natural Science Research Laboratory – Texas Tech|url=http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf|access-date=14 December 2017|archive-url=https://web.archive.org/web/20171215000829/http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf|archive-date=15 December 2017|url-status=dead}}</ref> The blood is kept from clotting by an [[anticoagulant]] in the saliva.<ref name="Nowak 1991"/>',
490 => '',
491 => '===Predators, parasites, and diseases===',
492 => '',
493 => '{{Further|Bat virome}}',
494 => '',
495 => 'Bats are subject to predation from [[birds of prey]], such as [[owls]], [[hawks]], and [[falcons]], and at roosts from terrestrial predators able to climb, such as cats.<ref name="RydellSpeakman1995"/> Low-flying bats are vulnerable to [[crocodile]]s.<ref>{{cite web |url=https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo |title=Flying Foxes Vs Freshwater Crocodile |author=BBC Earth |website=Youtube.com |date=10 April 2015 |access-date=19 August 2021 |url-status=live|archive-url=https://web.archive.org/web/20201001170139/https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo |archive-date=1 October 2020 }}</ref> Twenty species of tropical New World [[snake]]s are known to capture bats, often waiting at the entrances of refuges, such as caves, for bats to fly past.<ref name="EsbérardVrcibradic2007">{{cite journal |last1=Esbérard |first1=C. E. L. |last2=Vrcibradic |first2=D. |title=Snakes preying on bats: new records from Brazil and a review of recorded cases in the Neotropical Region |journal=Revista Brasileira de Zoologia |volume=24 |issue=3 |year=2007 |pages=848–853 |doi=10.1590/S0101-81752007000300036|doi-access=free }}</ref> J. Rydell and J. R. Speakman argue that bats evolved nocturnality during the early and middle [[Eocene]] period to avoid predators.<ref name="RydellSpeakman1995">{{cite journal |last1=Rydell |first1=J. |last2=Speakman |first2=J. R. |title=Evolution of nocturnality in bats: Potential competitors and predators during their early history |journal=Biological Journal of the Linnean Society |volume=54 |issue=2 |year=1995 |pages=183–191 |doi=10.1111/j.1095-8312.1995.tb01031.x}}</ref> The evidence is thought by some zoologists to be equivocal so far.<ref name="LimaO'Keefe2013">{{cite journal |last1=Lima |first1=S. L. |last2=O'Keefe |first2=J. M. |title=Do predators influence the behaviour of bats? |journal=Biological Reviews |volume=88 |issue=3 |year=2013 |pages=626–644 |doi=10.1111/brv.12021|pmid=23347323 |s2cid=32118961 |doi-access=free }}</ref>',
496 => '[[File:Little Brown Bat with White Nose Syndrome (Greeley Mine, cropped).jpg|thumb|upright|A [[little brown bat]] with [[white nose syndrome]]]]',
497 => '',
498 => 'As are most mammals, bats are hosts to a number of internal and external parasites.<ref name="Léger2020">{{cite journal|last1=Léger|first1=Clément|title=Bat parasites (Acari, Anoplura, Cestoda, Diptera, Hemiptera, Nematoda, Siphonaptera, Trematoda) in France (1762–2018): a literature review and contribution to a checklist|journal=Parasite|volume=27|year=2020|pages=61|issn=1776-1042|doi=10.1051/parasite/2020051|pmid=33206593|pmc=7673352|doi-access=free}} {{open access}}</ref> Among [[ectoparasite]]s, bats carry [[flea]]s and [[mite]]s, as well as specific parasites such as [[bat bug]]s and bat flies ([[Nycteribiidae]] and [[Streblidae]]).<ref>{{cite book |url=https://books.google.com/books?id=Li6_BAAAQBAJ |title=Bats (Chiroptera) as Vectors of Diseases and Parasites: Facts and Myths |last1=Klimpel |first1=S. |last2=Mehlhorn |first2=H. |year=2013 |publisher=Springer |isbn=978-3-642-39333-4 |page=87 }}</ref><ref name="Clayton2015"/> Bats are among the few non-aquatic mammalian orders that do not host [[lice]], possibly due to competition from more specialised parasites that occupy the same niche.<ref name="Clayton2015">{{cite book |url=https://books.google.com/books?id=lN0pCwAAQBAJ |title=Coevolution of Life on Hosts: Integrating Ecology and History |last1=Clayton |first1=D. H. |last2=Bush |first2=S. E. |last3=Johnson |first3=K. P. |year=2015 |publisher=University of Chicago Press |isbn=978-0-226-30227-0 |page=28}}</ref>',
499 => '',
500 => '[[White nose syndrome]] is a condition associated with the deaths of millions of bats in the [[Eastern United States]] and Canada.<ref>{{cite web |url=http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ |title=White-Nose Syndrome (WNS) |publisher=National Wildlife Health Center, U.S. Geological Survey |access-date=3 June 2014 |archive-url=https://web.archive.org/web/20190930212052/https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/ |archive-date=30 September 2019 |url-status=dead }}</ref> The disease is named after a white [[fungus]], ''[[Pseudogymnoascus destructans]]'', found growing on the muzzles, ears, and wings of affected bats. The fungus is mostly spread from bat to bat, and causes the disease.<ref>{{cite journal |author1=Lorch, J. M. |author2=Meteyer, C. U. |author3=Behr, M. J. |author4=Boyles, J. G. |author5=Cryan, P. M. |author6=Hicks, A. C. |author7=Ballmann, A. E. |author8=Coleman, J. T. H. |author9=Redell, D. N. |author10=Reeder, D. M. |author11=.Blehert, D. S. |year=2011 |title=Experimental infection of bats with Geomyces destructans causes white-nose syndrome |journal=Nature |volume=480 |issue=7377 |pages=376–378 |doi=10.1038/nature10590|pmid=22031324 |bibcode=2011Natur.480..376L |s2cid=4381156 }}</ref> The fungus was first discovered in central New York State in 2006 and spread quickly to the entire Eastern US north of Florida; mortality rates of 90–100% have been observed in most affected caves.<ref>{{cite web |url=http://www.cwhc-rcsf.ca/wns.php |title=White-Nose Syndrome – Background |publisher=Canadian Cooperative Wildlife Health Centre |access-date=3 June 2014 |archive-date=16 February 2020 |archive-url=https://web.archive.org/web/20200216145004/http://www.cwhc-rcsf.ca/wns.php |url-status=dead }}</ref> [[New England]] and the [[mid-Atlantic states]] have, since 2006, witnessed entire species completely extirpated and others with numbers that have gone from the hundreds of thousands, even millions, to a few hundred or less.<ref>{{cite web |url=http://philadelphia.cbslocal.com/2013/11/14/pennsylvanias-bats-nearly-wiped-out/ |title=Pennsylvania's Bats Nearly Wiped Out |author=Daly, M. |publisher=CBS Philadelphia |date=14 November 2013 |access-date=18 December 2017}}</ref> Nova Scotia, Quebec, Ontario, and New Brunswick have witnessed identical die offs, with the Canadian government making preparations to protect all remaining bat populations in its territory.<ref>{{cite web |url=http://o.canada.com/technology/white-nose-syndrome-killing-canadas-bats |title=White-nose syndrome killing Canada's bats |date=7 June 2012 |publisher=Postmedia Network |author=Gutenberg, G. |access-date=21 April 2016}}</ref> Scientific evidence suggests that longer winters where the fungus has a longer period to infect bats result in greater mortality.<ref>{{cite web |url=http://www.thefreelibrary.com/Canada+%3A+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192 |title=Canada : Environment Canada Announces Funding to Fight Threat of White-nose Syndrome to Bats |publisher=Mena Report |date=6 April 2013 |access-date=3 June 2014 |archive-date=28 March 2019 |archive-url=https://web.archive.org/web/20190328065456/https://www.thefreelibrary.com/Canada+%3a+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192 |url-status=dead }}</ref><ref>{{cite web |url=https://www.nsf.gov/news/news_summ.jsp?cntn_id=124679 |title=Social Bats Pay a Price: Fungal Disease, White-Nose Syndrome ... Extinction? |publisher=The National Science Foundation |date=3 July 2012 |access-date=3 June 2014}}</ref><ref name="FrickPollock2010">{{cite journal |last1=Frick |first1=W. F. |last2=Pollock |first2=J. F. |last3=Hicks |first3=A. C. |last4=Langwig |first4=K. E. |last5=Reynolds |first5=D. S. |last6=Turner |first6=G. G. |last7=Butchkoski |first7=C. M. |last8=Kunz |first8=T. H. |s2cid=43601856 |title=An Emerging Disease Causes Regional Population Collapse of a Common North American Bat Species |journal=Science |volume=329 |issue=5992 |year=2010 |pages=679–682 |doi=10.1126/science.1188594 |pmid=20689016 |bibcode=2010Sci...329..679F |url=https://digitalcommons.usf.edu/kip_articles/143 }}</ref> In 2014, the infection crossed the Mississippi River,<ref>{{cite web |url=https://www.whitenosesyndrome.org/sites/default/files/files/wns_illinois_detection_final_upload.pdf |publisher=Illinois Department of Natural Resources |date=28 February 2013 |title=White-Nose Syndrome Confirmed in Illinois Bats: Illinois becomes 20th state in U.S. to confirm deadly disease in bats}}</ref> and in 2017, it was found on bats in Texas.<ref>{{cite web |url=https://tpwd.texas.gov/newsmedia/releases/?req=20170323c |title=Fungus that Causes White-nose Syndrome in Bats Detected in Texas |publisher=Texas Parks and Wildlife |date=23 March 2017 |access-date=15 December 2017}}</ref>',
501 => '',
502 => 'Bats are [[natural reservoir]]s for a large number of [[zoonosis|zoonotic]] [[pathogen]]s,<ref name="Wong2007">{{cite journal |last=Wong |first=S. |date=October 2006 |title=Bats as a continuing source of emerging infections in humans |journal=Reviews in Medical Virology |publisher=[[John Wiley & Sons]] |volume=17 |issue=2 |pages=67–91 |doi=10.1002/rmv.520 |pmid=17042030 |quote=The currently known viruses that have been found in bats are reviewed and the risks of transmission to humans are highlighted. |author2=Lau, S. |author3=Woo, P. |author4=Yuen, K.-Y.|pmc=7169091 }}</ref> including [[Rabies in animals#Bats|rabies]], endemic in many bat populations,<ref name="McColl2000">{{cite journal |last=McColl |first=K. A. |year= 2000 |title=Bat lyssavirus infections |journal=Revue Scientifique et Technique |volume=19 |issue=1 |pages=177–196 |pmid=11189715 |quote=Bats, which represent approximately 24% of all known mammalian species, frequently act as vectors of lyssaviruses. |author2=Tordo, N. |author3=Setien Aquilar, A. A.|doi=10.20506/rst.19.1.1221 |doi-access= }}</ref><ref name=Calisher2006>{{Cite journal|author1-link=Charles Calisher |last1=Calisher |first1=C. H. |last2=Childs |first2=J. E. |last3=Field |first3=H. E. |last4=Holmes |first4=K. V. |last5=Schountz |first5=T. |year= 2006 |title=Bats: Important Reservoir Hosts of Emerging Viruses |journal=Clinical Microbiology Reviews |volume=19 |issue=3 |pages=531–545 |doi=10.1128/CMR.00017-06 |pmc=1539106 |pmid=16847084}}</ref><ref name="Brüssow2012">{{cite book |last1=Brüssow |first1=H. |title=Viruses: Essential Agents of Life |year=2012 |pages=245–267 |doi=10.1007/978-94-007-4899-6_12|chapter=On Viruses, Bats and Men: A Natural History of Food-Borne Viral Infections |isbn=978-94-007-4898-9 |s2cid=82956979 }}</ref> [[histoplasmosis]] both directly and in guano,<ref name=CDC2014/> [[Henipavirus|Nipah and Hendra viruses]],<ref name="EatonBroder2006">{{cite journal |last1=Eaton |first1=Bryan T. |last2=Broder |first2=Christopher C. |last3=Middleton |first3=Deborah |last4=Wang |first4=Lin-Fa |title=Hendra and Nipah viruses: different and dangerous |journal=Nature Reviews Microbiology |volume=4 |issue=1 |year=2006 |pages=23–35 |doi=10.1038/nrmicro1323|pmid=16357858 |pmc=7097447 }}</ref><ref name="Halpin2000">{{cite journal |last1=Halpin |first1=K. |year=2000 |title=Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus |journal=[[Journal of General Virology]] |volume=81 |issue=8 |pages=1927–1932 |pmid=10900029 |quote=In this paper we describe the isolation of HeV from pteropid bats, corroborating our serological and epidemiological evidence that these animals are a natural reservoir host of this virus. |author2=Young, P. L. |author3=Field, H. E. |author4=Mackenzie, J. S.|doi=10.1099/0022-1317-81-8-1927 |doi-access=free }}</ref> and possibly the [[ebola virus]],<ref name="Leroy2005">{{cite journal |last=Leroy |first=E. M. |year= 2005 |title=Fruit bats as reservoirs of Ebola virus |journal=[[Nature (journal)|Nature]] |volume=438 |issue=7068 |pages=575–576 |bibcode=2005Natur.438..575L |doi=10.1038/438575a |pmid=16319873 |quote=We find evidence of asymptomatic infection by Ebola virus in three species of megabats, indicating that these animals may be acting as a reservoir for this deadly virus. |author2=Kumulungui, B. |author3=Pourrut, X. |author4=Rouque, P.|s2cid=4403209 }}</ref><ref name="SciAm2006">{{cite news |url=http://www.sciam.com/article.cfm?id=going-to-bat |title=Going to Bat |year= 2006 |work=[[Scientific American]] |pages=24, 26 |quote=Long known as vectors for rabies, bats may be the origin of some of the most deadly emerging viruses, including SARS, Ebola, Nipah, Hendra and Marburg. |author=Choi, C. Q.}} Note: This is a lay summary of the various scientific publications cited in the preceding sentence.</ref> whose natural reservoir is yet unknown.<ref name="CDC EVD">{{cite web|url=https://www.cdc.gov/vhf/ebola/about.html| title=What is Ebola Virus Disease?| website=Centers for Disease Control and Prevention| date=5 November 2019| access-date=13 April 2020|quote=Scientists do not know where Ebola virus comes from.}}</ref><ref>{{cite journal|doi=10.1016/j.aogh.2015.02.005|quote=Despite concerted investigative efforts, the natural reservoir of the virus is unknown.|title=Transmission of Ebola Virus Disease: An Overview|year=2015|last1=Rewar|first1=Suresh|last2=Mirdha|first2=Dashrath|journal=Annals of Global Health|volume=80|issue=6|pages=444–51|pmid=25960093|doi-access=free}}</ref> Their high mobility, broad distribution, long life spans, substantial [[sympatry]] (range overlap) of species, and social behaviour make bats favourable hosts and vectors of disease.<ref name=Castro2013/> Reviews have found different answers as to whether bats have more zoonotic viruses than other mammal groups. One 2015 review found that bats, rodents, and primates all harbored significantly more [[zoonotic]] viruses (which can be transmitted to humans) than other mammal groups, though the differences among the aforementioned three groups were not significant (bats have no more zoonotic viruses than rodents and primates).<ref name="Olival">{{cite book|doi=10.1002/9781118818824.ch11|chapter=Are Bats Really 'Special' as Viral Reservoirs? What We Know and Need to Know|title=Bats and Viruses|year=2015|last1=Olival|first1=Kevin J.|last2=Weekley|first2=Cristin C.|last3=Daszak|first3=Peter|pages=281–294|isbn=978-1118818824}}</ref> Another 2020 review of mammals and birds found that the identity of the taxonomic groups did not have any impact on the probability of harboring zoonotic viruses. Instead, more diverse groups had greater viral diversity.<ref name="Mollentze">{{cite journal|doi=10.1073/pnas.1919176117|title=Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts|year=2020|last1=Mollentze|first1=Nardus|last2=Streicker|first2=Daniel G.|journal=Proceedings of the National Academy of Sciences|volume=117|issue=17|pages=9423–9430|pmid=32284401|pmc=7196766|bibcode=2020PNAS..117.9423M |doi-access=free}}</ref>',
503 => '',
504 => 'They seem to be highly resistant to many of the pathogens they carry, suggesting a degree of adaptation to their immune systems.<ref name=Castro2013>{{Cite web |author=Castro, J. |url=http://www.livescience.com/26898-bats-host-human-infecting-viruses.html |title=Bats Host More Than 60 Human-Infecting Viruses |date=6 February 2013 |access-date=19 December 2017 |publisher=Live Science}}</ref><ref>{{Cite journal |last=Dobson |first=A. P. |year= 2005 |title=What Links Bats to Emerging Infectious Diseases? |journal=Science |volume=310 |issue=5748 |pages=628–629 |doi=10.1126/science.1120872 |pmid=16254175|s2cid=84007133 }}</ref><ref>{{Cite web |url=http://www.iflscience.com/plants-and-animals/why-do-bats-transmit-so-many-diseases/ |title=Why Do Bats Transmit So Many Diseases? |date=6 August 2014 |publisher=IFL Science |access-date=19 December 2017}}</ref> Their interactions with livestock and pets, including predation by vampire bats, accidental encounters, and the scavenging of bat carcasses, compound the risk of zoonotic transmission.<ref name=Calisher2006/> Bats are implicated in the emergence of [[severe acute respiratory syndrome]] (SARS) in China, since they serve as natural hosts for [[coronavirus]]es, several from a single cave in [[Yunnan]], one of which developed into the SARS virus.<ref name=CDC2014>{{Cite web |url=https://www.cdc.gov/features/bats/ |title=CDC Features – Take Caution When Bats Are Near |publisher=Centers for Disease Control and Prevention |date=14 April 2014}}</ref><ref name="Li2005">{{cite journal |last=Li |first=W. |date=28 October 2005 |title=Bats are natural reservoirs of SARS-like coronaviruses |journal=[[Science (journal)|Science]] |volume=310 |issue=5748 |pages=676–679 |bibcode=2005Sci...310..676L |doi=10.1126/science.1118391 |pmid=16195424 |quote=The genetic diversity of bat-derived sequences supports the notion that bats are a natural reservoir host of the SARS cluster of coronaviruses.|author2=Shi, Z. |author3=Yu, M. |author4=Ren, W. |s2cid=2971923 |url=https://zenodo.org/record/3949088|doi-access=free }}</ref><ref name="DrostenHu2017">{{cite journal |last1=Drosten |first1=C. |last2=Hu |first2=B. |last3=Zeng |first3=L.-P. |last4=Yang |first4=X.-L. |last5=Ge |first5=Xing-Yi |last6=Zhang |first6=Wei |last7=Li |first7=Bei |last8=Xie |first8=J.-Z. |last9=Shen |first9=X.-R. |last10=Zhang |first10=Yun-Zhi |last11=Wang |first11=N. |last12=Luo |first12=D.-S. |last13=Zheng |first13=X.-S. |last14=Wang |first14=M.-N. |last15=Daszak |first15=P. |last16=Wang |first16=L.-F. |last17=Cui |first17=J. |last18=Shi |first18=Z.-L. |title=Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus |journal=PLOS Pathogens |volume=13 |issue=11 |year=2017 |pages=e1006698 |doi=10.1371/journal.ppat.1006698|pmid=29190287 |pmc=5708621 |doi-access=free }}</ref> However, they neither cause nor spread [[COVID-19]].<ref>{{cite journal |author1=Srinivasulu, C. |name-list-style=amp |author2=Molur, S. |year=2020 |title=Bats don't cause or spread Covid-19 |journal=Zoo's Print |volume=35 |issue=4 |pages=1–3 |url=https://www.zoosprint.zooreach.org/index.php/zp/article/view/5669/5086}}</ref>',
505 => '',
506 => '==Behaviour and life history==',
507 => '===Social structure===',
508 => '',
509 => '[[File:Bracken Bat Cave evening of 17 June 2017.ogv|thumb|right|[[Bracken Bat Cave]], home to twenty million Mexican free-tailed bats]]',
510 => '',
511 => 'Some bats lead solitary lives, while others live in colonies of more than a million.{{sfn|Fenton|2001|pages=95–107}} For instance, the [[Mexican free-tailed bat]] fly for more than one thousand miles to the {{Convert|100|ft|m|adj=on}} wide cave known as [[Bracken Cave]] every March to October which plays home to an astonishing twenty million of the species,<ref>{{Cite web|title=How Many Species of Bats Are There? |url=https://www.worldatlas.com/articles/bat-species.html |access-date=21 September 2020 |website=WorldAtlas|date=14 March 2018 }}</ref> whereas a [[mouse-eared bat]] lives an almost completely solitary life.<ref>{{cite news |last=Barkham |first=Patrick |date=12 June 2018 |title=The last bat: the mystery of Britain's most solitary animal |work=[[The Guardian]] |url=https://www.theguardian.com/news/2018/jun/12/the-last-bat-the-mystery-of-britains-most-solitary-animal |access-date=21 September 2020 |issn=0261-3077}}</ref> Living in large colonies lessens the risk to an individual of predation.<ref name="MacDonald"/> Temperate bat species may [[Swarm behaviour|swarm]] at hibernation sites as autumn approaches. This may serve to introduce young to hibernation sites, signal reproduction in adults and allow adults to breed with those from other groups.{{sfn|Fenton|Simmons|2015|pages=188–189}}',
512 => '',
513 => 'Several species have a [[fission–fusion society|fission-fusion social structure]], where large numbers of bats congregate in one roosting area, along with breaking up and mixing of subgroups. Within these societies, bats are able to maintain long-term relationships.<ref>{{cite journal |author1=Kerth, G. |author2=Perony, N. |author3=Schweitzer, F. |year=2011 |title=Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups |journal=Proceedings of the Royal Society B: Biological Sciences |volume=278 |issue=1719 |pages=2761–2767 |doi=10.1098/rspb.2010.2718|pmid=21307051 |pmc=3145188 }}</ref> Some of these relationships consist of [[matrilineal]]ly related females and their dependent offspring.<ref>{{cite journal |author1=Fornůsková, A |author2=Petit, E. J. |author3=Bartonička, T. |author4=Kaňuch, P. |author5=Butet, A. |author6=Řehák, Z. |author7=Bryja, J. |year=2014 |title=Strong matrilineal structure in common pipistrelle bats (''Pipistrellus pipistrellus'') is associated with variability in echolocation calls |journal=Biological Journal of the Linnean Society |volume=113 |issue=4 |pages=1115–1125 |doi=10.1111/bij.12381|doi-access=free }}</ref> Food sharing and [[mutual grooming]] may occur in certain species, such as the common vampire bat (''Desmodus rotundus''), and these strengthen social bonds.<ref name="Carter & Wilkinson 2013">{{cite journal |author1=Carter, G. G. |author2=Wilkinson, G. S. D. |year=2013 |title=Does food sharing in vampire bats demonstrate reciprocity? |journal=Communicative & Integrative Biology |volume=6|issue=6 |pmc=3913674 |pmid=24505498 |doi=10.4161/cib.25783 |pages=e25783}}</ref><ref name="Wilkinson 1986">{{cite journal |author=Wilkinson, G. S. |year=1986 |title=Social Grooming in the Common Vampire Bat, ''Desmodus rotundus'' |url=http://www.life.umd.edu/faculty/wilkinson/Wilk_AB86.pdf |journal=Anim. Behav. |volume=34 |issue=6 |pages=1880–1889 |doi=10.1016/s0003-3472(86)80274-3|citeseerx=10.1.1.539.5104 |s2cid=11214563}}</ref> Homosexual fellatio has been observed in the Bonin Flying Fox ''Pteropus pselaphon''<ref>{{Cite journal |last=Sugita |first=Norimasa |date=2016 |title=Homosexual fellatio: erect penis licking between male Bonin Flying Foxes Pteropus pselaphon |journal=PLOS ONE |volume=11 |issue=11 |pages=e0166024|doi=10.1371/journal.pone.0166024 |doi-access=free |pmid=27824953 }}</ref> and the Indian Flying Fox ''Pteropus medius'',<ref>{{Cite journal |last1=Sundar |first1=K. S. Gopi |last2=Kittur |first2=Swati |date=2020 |title=An observation of homosexual fellatio in the Indian Flying Fox Pteropus medius (Temminck, 1825) (Mammalia: Chiroptera: Pteropodidae) |journal=Journal of Threatened Taxa |volume=12 |issue=8 |pages=15945–15946|doi=10.11609/jott.5893.12.8.15945-15946 |doi-access=free }}</ref> though the function and purpose of this behaviour is not clear. ',
514 => '',
515 => '===Communication===',
516 => '',
517 => '[[File:Journal.pone.0006746.g001.png|thumb|left|Acoustics of the songs of [[Mexican free-tailed bat]]s<ref name="Bohn"/>]]',
518 => '',
519 => 'Bats are among the most vocal of mammals and produce calls to attract mates, find roost partners and defend resources. These calls are typically low-frequency and can travel long distances.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|pages=190–194}} Mexican free-tailed bats are one of the few species to "sing" like birds. Males sing to attract females. Songs have three phrases: chirps, trills and buzzes, the former having "A" and "B" syllables. Bat songs are highly stereotypical but with variation in syllable number, phrase order, and phrase repetitions between individuals.<ref name="Bohn">{{cite journal |last1=Bohn|first1=K. M.|first2=Barbara|last2=Schmidt-French|first3=Christine|last3=Schwartz|first4=Michael|last4=Smotherman|first5=George D.|last5=Pollak|year=2009|title=Versatility and Stereotypy of Free-Tailed Bat Songs |journal=PLOS ONE|volume=4 |issue=8 |page=e6746 |doi=10.1371/journal.pone.0006746 |bibcode=2009PLoSO...4.6746B|pmc=2727915 |pmid=19707550|doi-access=free}}</ref> Among [[greater spear-nosed bat]]s (''Phyllostomus hastatus''), females produce loud, broadband calls among their roost mates to form group cohesion. Calls differ between roosting groups and may arise from vocal learning.<ref>{{cite journal |author=Boughman, J. W. |year=1998 |title=Vocal learning by greater spear-nosed bats|journal=Proceedings of the Royal Society B: Biological Sciences |volume=265 |issue=1392 |pages=227–233 |doi=10.1098/rspb.1998.0286|pmid=9493408 |pmc=1688873 }}</ref>',
520 => '',
521 => 'In a study on captive Egyptian fruit bats, 70% of the directed calls could be identified by the researchers as to which individual bat made it, and 60% could be categorised into four contexts: squabbling over food, jostling over position in their sleeping cluster, protesting over mating attempts and arguing when perched in close proximity to each other. The animals made slightly different sounds when communicating with different individual bats, especially those of the opposite sex.<ref>{{cite journal |last1=Prat |first1=Y. |last2=Taub |first2=M. |last3=Yovel |first3=Y. |title=Everyday bat vocalizations contain information about emitter, addressee, context, and behavior |journal=Scientific Reports |date=22 December 2016 |volume=6 |pages=39419 |doi=10.1038/srep39419 |pmid=28005079 |pmc=5178335 |bibcode=2016NatSR...639419P }}</ref> In the highly [[sexual dimorphism|sexually dimorphic]] [[hammer-headed bat]] (''Hypsignathus monstrosus''), males produce deep, resonating, monotonous calls to attract females. Bats in flight make vocal signals for traffic control. Greater bulldog bats honk when on a collision course with each other.{{sfn|Fenton|Simmons|2015|pages=190–194}}',
522 => '',
523 => 'Bats also communicate by other means. Male [[little yellow-shouldered bat]]s (''Sturnira lilium'') have shoulder glands that produce a spicy odour during the breeding season. Like many other species, they have hair specialised for retaining and dispersing secretions. Such hair forms a conspicuous collar around the necks of the some Old World megabat males. Male [[greater sac-winged bat]]s (''Saccopteryx bilineata'') have sacs in their wings in which they mix body secretions like saliva and urine to create a perfume that they sprinkle on roost sites, a behaviour known as "salting". Salting may be accompanied by singing.{{sfn|Fenton|Simmons|2015|pages=190–194}}',
524 => '',
525 => '===Reproduction and life cycle===',
526 => '',
527 => '[[File:Desmo-kolonie-baum.tif|thumb|left|Group of polygynous vampire bats]]',
528 => '',
529 => 'Most bat species are [[Polygyny in animals|polygynous]], where males mate with multiple females. Male pipistrelle, noctule and vampire bats may claim and defend resources that attract females, such as roost sites, and mate with those females. Males unable to claim a site are forced to live on the periphery where they have less reproductive success.<ref name="mating">{{cite journal |author=Wilkinson, G. S. |year=1985 |title=The Social Organization of the Common Vampire Bat II: Mating system, genetic structure, and relatedness |journal=Behavioral Ecology and Sociobiology |volume=17 |issue=2 |pages=123–134 |url=http://www.life.umd.edu/faculty/wilkinson/Wilk_BES85b.pdf |doi=10.1007/BF00299244|s2cid=12460893 }}</ref><ref name="MacDonald"/> [[Promiscuity#Other animals|Promiscuity]], where both sexes mate with multiple partners, exists in species like the Mexican free-tailed bat and the little brown bat.<ref>{{cite journal |author1=Thomas, D. W. |author2=Fenton, M. R. |author3=Barclay, R. M. R. |year=1979 |title=Social Behavior of the Little Brown Bat, ''Myotis lucifugus'': I. Mating Behavior |journal=Behavioral Ecology and Sociobiology |volume=6 |issue=2 |pages=129–136 |jstor=4599268 |doi=10.1007/bf00292559|s2cid=27019675 }}</ref><ref>{{cite journal |doi=10.1644/BME-004 |title=The Mating System of ''Tadarida brasiliensis'' (Chiroptera: Molossidae) in a Large Highway Bridge Colony |journal=Journal of Mammalogy |volume=85|pages=113–119 |year=2004 |last1=Keeley |first1=A. T. H. |last2=Keeley |first2=B. W.|doi-access=free }}</ref> There appears to be bias towards certain males among females in these bats.<ref name="MacDonald"/> In a few species, such as the yellow-winged bat and spectral bat, adult males and females form [[Monogamy in animals|monogamous]] pairs.<ref name="MacDonald"/>{{sfn|Fenton|Simmons|2015|page=197}} [[Lek mating]], where males aggregate and compete for female choice through display, is rare in bats<ref>{{cite journal |author1=Toth, C. A. |author2=Parsons, S. |year=2013 |title=Is lek breeding rare in bats? |journal=Journal of Zoology |volume=291 |issue=1 |pages=3–11 |doi=10.1111/jzo.12069}}</ref> but occurs in the hammerheaded bat.<ref>{{cite journal |last=Bradbury |first=J. W. |year=1977 |title=Lek Mating Behavior in the Hammer-headed Bat |journal=Zeitschrift für Tierpsychologie |volume=45 |issue=3 |pages=225–255 |doi=10.1111/j.1439-0310.1977.tb02120.x |url=https://zenodo.org/record/8204647 }}</ref>',
530 => '',
531 => 'For temperate living bats, mating takes place in late summer and early autumn.{{sfn|Altringham|2011|page=105}} Tropical bats may mate during the dry season.<ref>{{cite journal |author1=Mares, M. A. |author2=Wilson, D. E. |year=1971 |title=Bat Reproduction during the Costa Rican Dry Season |journal=BioScience |volume=21 |issue=10 |pages=471–472+477|doi=10.2307/1295789 |jstor=1295789}}</ref> After copulation, the male may leave behind a [[mating plug]] to block the sperm of other males and thus ensure his paternity.<ref name="CrichtonKrutzsch2000">{{cite book|author1=Elizabeth G. Crichton|author2=Philip H. Krutzsch|title=Reproductive Biology of Bats|url=https://books.google.com/books?id=f1aNgZwGsYoC|date=12 June 2000|publisher=Academic Press|isbn=978-0-08-054053-5}}</ref> In hibernating species, males are known to mate with females in torpor.<ref name="MacDonald"/> Female bats use a variety of strategies to control the timing of pregnancy and the birth of young, to make delivery coincide with maximum food ability and other ecological factors. Females of some species have delayed fertilisation, in which sperm is stored in the reproductive tract for several months after mating. Mating occurs in late summer to early autumn but fertilisation does not occur until the following late winter to early spring. Other species exhibit [[delayed implantation]], in which the egg is fertilised after mating, but remains free in the reproductive tract until external conditions become favourable for giving birth and caring for the offspring.{{sfn|Altringham|2011|page=114–119}} In another strategy, fertilisation and implantation both occur, but development of the foetus is delayed until good conditions prevail. During the delayed development the mother keeps the fertilised egg alive with nutrients. This process can go on for a long period, because of the advanced gas exchange system.<ref>{{cite book |title=Biology of Bats |url=https://books.google.com/books?id=Gtp4yWnPD9YC&q=Biology+Bats |author1=Neuweiler, G. |publisher=Oxford University Press |year=2000 |page=247 |isbn=978-0-19-509950-8}}</ref>',
532 => '[[File:Pipistrellus pipistrellus baby.jpg|thumb|right|Newborn common pipistrelle, ''Pipistrellus pipistrellus'']]',
533 => '',
534 => 'For temperate living bats, births typically take place in May or June in the northern hemisphere; births in the southern hemisphere occur in November and December. Tropical species give birth at the beginning of the rainy season.<ref>{{cite book |author=Fenton, M. B. |year=1983 |title=Just Bats |publisher=University of Toronto Press |isbn=978-1442655386 |url=https://books.google.com/books?id=cueMBgAAQBAJ&q=bat+breeding+seasons&pg=PT100}}</ref> In most bat species, females carry and give birth to a single pup per litter.<ref>{{cite book |author1=Kunz, T. H. |author2=Fenton, B. |year=2005 |title=Bat Ecology |publisher=University of Chicago Press |page=216 |isbn=978-0226462073}}</ref> At birth, a bat pup can be up to 40 percent of the mother's weight,<ref name="MacDonald"/> and the pelvic girdle of the female can expand during birth as the two-halves are connected by a flexible ligament.{{sfn|Fenton|2001|page=166}} Females typically give birth in a head-up or horizontal position, using gravity to make birthing easier. The young emerges rear-first, possibly to prevent the wings from getting tangled, and the female cradles it in her wing and tail membranes. In many species, females give birth and raise their young in [[Maternity colony (bats)|maternity colonies]] and may assist each other in birthing.<ref>{{cite book |author1=Nagorsen, D. W. |author2=Brigham, R. M. |title=Bats of British Columbia |publisher=UBC Press |page=17 |isbn=978-0774804820|year=1993 }}</ref>{{sfn|Altringham|2011|page=119}}{{sfn|Fenton|2001|page=166}}',
535 => '',
536 => 'Most of the care for a young bat comes from the mother. In monogamous species, the father plays a role. Allo-suckling, where a female suckles another mother's young, occurs in several species. This may serve to increase colony size in species where females return to their natal colony to breed.<ref name="MacDonald"/> A young bat's ability to fly coincides with the development of an adult body and forelimb length. For the little brown bat, this occurs about eighteen days after birth. Weaning of young for most species takes place in under eighty days. The common vampire bat nurses its offspring beyond that and young vampire bats achieve independence later in life than other species. This is probably due to the species' blood-based diet, which is difficult to obtain on a nightly basis.{{sfn|Fenton|Simmons|2015|page=171}}',
537 => '',
538 => '===Life expectancy===',
539 => '[[File:The Bat Scientists Lauri Lutsar.jpg|thumb|right|The bat scientist Lauri Lutsar is checking the age of the bat he is holding as part of a national monitoring program in [[Estonia]]]]',
540 => 'The maximum lifespan of bats is three-and-a-half times longer than other mammals of similar size. Six species have been recorded to live over thirty years in the wild: the brown long-eared bat (''Plecotus auritus''), the little brown bat (''Myotis lucifugus''), the [[Siberian bat]] (''Myotis sibiricus''), the [[lesser mouse-eared bat]] (''Myotis blythii'') the [[greater horseshoe bat]] (''Rhinolophus ferrumequinum''), and the [[Indian flying fox]] (''Pteropus giganteus'').<ref>{{cite book |title= Walker's Mammals of the World |first= Ronald M. |last=Nowak |edition= illustrated |publisher= JHU Press |year= 1999 |isbn= 978-0801857898 |page= 269}}</ref> One hypothesis consistent with the [[rate-of-living theory]] links this to the fact that they slow down their [[metabolic rate]] while [[hibernating]]; bats that hibernate, on average, have a longer lifespan than bats that do not.<ref>{{cite journal |first1=C. |last1=Turbill |first2=C. |last2=Bieber |first3=T. |last3=Ruf |year=2011 |title=Hibernation is associated with increased survival and the evolution of slow life histories among mammals |journal=Proceedings of the Royal Society B |volume=278 |issue=1723 |pages=3355–3363 |doi=10.1098/rspb.2011.0190 |pmc=3177628 |pmid=21450735}}</ref><ref name=wilkinson2002/>',
541 => '',
542 => 'Another hypothesis is that flying has reduced their mortality rate, which would also be true for birds and gliding mammals. Bat species that give birth to multiple pups generally have a shorter lifespan than species that give birth to only a single pup. Cave-roosting species may have a longer lifespan than non-roosting species because of the decreased predation in caves. A male Siberian bat was recaptured in the wild after 41 years, making it the oldest known bat.<ref name=wilkinson2002>{{cite journal |url =http://www.life.umd.edu/faculty/wilkinson/Wilk_South02.pdf |title=Life history, ecology and longevity in bats |first1=G. S. |last1=Wilkinson |first2=J. M. |last2=South |journal=Aging Cell |year=2002 |volume=1 |issue=2 |pages=124–131 |doi=10.1046/j.1474-9728.2002.00020.x |pmid=12882342|s2cid=855367 }}</ref><ref>{{cite journal |first1=Y. |last1=Gager |first2=O. |last2=Gimenez |first3=M. T. |last3=O'Mara |first4=D. K. N. |last4=Dechmann |year=2016 |title=Group size, survival and surprisingly short lifespan in socially foraging bats |journal=BMC Ecology |volume=16 |issue=2 |pages=2 |doi=10.1186/s12898-016-0056-1 |pmc=4714502 |pmid=26767616 |doi-access=free |bibcode=2016BMCE...16....2G }}</ref>',
543 => '',
544 => '==Interactions with humans==',
545 => '',
546 => '{{Main|Human uses of bats}}',
547 => '',
548 => '===Conservation<!--linked from [[bat conservation]]-->===',
549 => '',
550 => '{{See also|List of bats by population}}',
551 => '{{Pie chart',
552 => ' | caption=Conservation statuses of bats as of 2020 according to the IUCN (1,314 species in total)<ref>{{cite web|url=https://www.iucnredlist.org/search/stats| title=Taxonomy: Chiroptera| website=IUCN Red List of Threatened Species| access-date=14 December 2020}}</ref>',
553 => ' |other =',
554 => ' |value1 = 1.6',
555 => ' |label1 = Critically endangered',
556 => ' |value2 = 6.3',
557 => ' |label2 = Endangered',
558 => ' |value3 = 8.3',
559 => ' |label3 = Vulnerable',
560 => ' |value4 = 6.7',
561 => ' |label4 = Near-threatened',
562 => ' |value5 = 58.0',
563 => ' |label5 = Least concern',
564 => ' |value6 = 18.4',
565 => ' |label6 = Data deficient',
566 => ' |value7 = 0.7',
567 => ' |label7 = Extinct}}',
568 => '',
569 => 'Groups such as the [[Bat Conservation International]]<ref>{{cite web |title=Mission & Vision |url=http://www.batcon.org/about-us/about-bci/mission-vision |publisher=Bat Conservation International |access-date=16 November 2017}}</ref> aim to increase awareness of bats' ecological roles and the environmental threats they face. In the United Kingdom, all bats are protected under the [[Wildlife and Countryside Act]]s, and disturbing a bat or its roost can be punished with a heavy fine.<ref>{{cite web |title=Bats and the Law |url=http://www.bats.org.uk/pages/bats_and_the_law.html |publisher=Bat Conservation Trust |access-date=16 November 2017}}</ref>',
570 => 'In [[Sarawak]], Malaysia, "all bats"<ref name=WPO1998/> are protected under the [[Malaysian Wildlife Law|Wildlife Protection Ordinance 1998]],<ref name=WPO1998>{{cite web |title=Wildlife Protection Ordinance 1998 |url=http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf |publisher=FAO |access-date=16 November 2017 |archive-date=17 November 2017 |archive-url=https://web.archive.org/web/20171117002846/http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf |url-status=dead }}</ref> but species such as the [[hairless bat]] (''Cheiromeles torquatus'') are still eaten by the local communities.<ref>{{cite journal |author1=Leong, T. M. |author2=Teo, S. C. |author3=Lim, K. K. P. |year=2009 |title=The Naked Bulldog Bat, ''Cheiromeles torquatus'' in Singapore – past and present records, with highlights on its unique morphology (Microchiroptera: Molossidae) |journal=Nature in Singapore |volume=2 |pages=215–230}}</ref> Humans have caused the extinction of several species of bat in modern history, the most recent being the [[Christmas Island pipistrelle]] (''Pipistrellus murrayi''), which was declared extinct in 2009.<ref>{{cite book|author1=Ceballos, G. |author2=Ehrlich, A. H. |author3=Ehrlich, P. R. |year=2015|title=The Annihilation of Nature: Human Extinction of Birds and Mammals|publisher=Johns Hopkins University Press|pages=75–76|isbn=978-1421417189}}</ref>',
571 => '',
572 => 'Many people put up bat houses to attract bats.<ref>{{cite web |title=All about bats |url=http://www.batcon.org/ |publisher=Bat Conservation International |date=24 January 2002 |url-status=dead |archive-url=https://web.archive.org/web/20130623184422/http://batcon.org/ |archive-date=23 June 2013}}</ref> The 1991 [[University of Florida]] bat house is the largest occupied artificial roost in the world, with around 400,000 residents.<ref>{{Cite web |url=https://www.flmnh.ufl.edu/index.php/bats/home/ |title=Welcome to the World's Largest Occupied Bat Houses |publisher=Florida Museum of Natural History |access-date=18 December 2017}}</ref> In Britain, thickwalled and partly underground [[British hardened field defences of World War II|World War II pillboxes]] have been converted to make roosts for bats,<ref>{{cite web |url=http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf |title=Protecting and managing underground sites for bats, see section 6.4. |publisher=Eurobats |access-date=18 May 2006 |url-status=dead |archive-url=https://web.archive.org/web/20120512092008/http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf |archive-date=12 May 2012}}</ref><ref>{{cite news |url=http://news.bbc.co.uk/1/hi/england/4885642.stm |title=Pillbox converted to bat retreat |publisher=BBC |access-date=18 May 2006 |date=6 April 2006}}</ref> and purpose-built bat houses are occasionally built to mitigate damage to habitat from road or other developments.<ref>{{Cite web |url=http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/7330846.stm |title=Bypass wings it with bat bridges |date=4 April 2008 |publisher=BBC |access-date=21 August 2016}}</ref><ref>{{Cite web |url=http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/8320610.stm |title=Bat bridges cost £27k per animal |date=22 October 2009 |publisher=BBC |access-date=21 August 2016}}</ref> [[Cave gate]]s are sometimes installed to limit human entry into caves with sensitive or endangered bat species. The gates are designed not to limit the airflow, and thus to maintain the cave's micro-ecosystem.<ref name="AGENCY">{{cite web |url=http://www.batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf |title=Agency Guide to Cave and Mine Gates 2009 |website=Batcon.org |access-date=1 November 2017 |archive-date=20 October 2012 |archive-url=https://web.archive.org/web/20121020143210/http://batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf |url-status=dead }}</ref> Of the 47 species of bats found in the United States, 35 are known to use human structures, including buildings and bridges. Fourteen species use bat houses.<ref>{{cite book |last1=Pfeiffer |first1=Martin J. |title=Bats, People, and Buildings: Issues and Opportunities |date=February 2019 |publisher=United States Department of Agriculture, Forest Service, Forest Products Laboratory |location=Madison, WI |url=https://purl.fdlp.gov/GPO/gpo117356 |access-date=26 March 2019}}</ref>',
573 => '',
574 => '[[Bat as food|Bats are eaten]] in countries across Africa, Asia and the Pacific Rim. In some cases, such as in Guam, flying foxes have become endangered through being hunted for food.<ref>{{cite book |last1=Hopkins |first1=J. |last2=Bourdain |first2=A. |title=Extreme Cuisine: The Weird & Wonderful Foods that People Eat |url=https://books.google.com/books?id=DJDKaxEEfYgC&pg=PA51 |year=2004 |publisher=Periplus |isbn=978-0-7946-0255-0 |page=51}}</ref> There is evidence that suggests that [[wind turbine]]s might create sufficient [[barotrauma]] (pressure damage) to kill bats.<ref name="BaerwaldD'Amours2008">{{cite journal |last1=Baerwald |first1=E. F. |last2=D'Amours |first2=G. H. |last3=Klug |first3=B. J. |last4=Barclay |first4=R. M. R. |title=Barotrauma is a significant cause of bat fatalities at wind turbines |journal=Current Biology |volume=18 |issue=16 |year=2008 |pages=R695–R696 |doi=10.1016/j.cub.2008.06.029 |pmid=18727900|s2cid=17019562 |doi-access=free }}</ref> Bats have typical [[Lung#Mammalian lungs|mammalian lungs]], which are thought to be more sensitive to sudden air pressure changes than [[Avian lungs|the lungs of birds]], making them more liable to fatal rupture.<ref name="nww">{{Cite journal|url=http://www.wind-watch.org/news/2008/09/23/bc-study-to-help-bats-survive-wind-farms/ |title=B.C. study to help bats survive wind farms |journal=National Wind Watch |date=23 September 2008 |access-date=19 April 2015}}</ref><ref>"[https://www.newscientist.com/article/dn11834 Bats take a battering at wind farms]", ''[[New Scientist]]'', 12 May 2007</ref><ref>{{cite web |url=http://vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf |publisher=Bat Conservation International |title=Caution Regarding Placement of Wind Turbines on Wooded Ridge Tops |date=4 January 2005 |access-date=21 April 2006 |archive-url=https://web.archive.org/web/20060523210423/http://www.vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf |archive-date=23 May 2006 |url-status=dead}}</ref><ref>{{cite web |url=http://batcon.org/wind/BWEC2004finalreport.pdf |publisher=Bat Conservation International |title=Relationships between Bats and Wind Turbines in Pennsylvania and West Virginia: An Assessment of Fatality Search Protocols, Patterns of Fatality, and Behavioral Interactions with Wind Turbines |access-date=21 April 2006 |date=12 June 2005 |first=E. B. |last=Arnett |author2=Erickson, W. P. |author3=Kerns, J. |author4=Horn, J. |archive-url=https://web.archive.org/web/20060210183113/http://batcon.org/wind/BWEC2004finalreport.pdf |archive-date=10 February 2006}}</ref><ref>{{cite journal |last=Baerwald |first=E. F. |author2=D'Amours, G.H. |author3=Klug, Brandon J. |author4=Barclay, R. M. R. |date=26 August 2008 |title=Barotrauma is a significant cause of bat fatalities at wind turbines |journal=[[Current Biology]] |volume=18 |issue=16 |pages=R695–R696 |doi=10.1016/j.cub.2008.06.029 |oclc=252616082 |pmid=18727900|s2cid=17019562 |doi-access=free }}<!-- this study does not appear to include any measurements or calculations of pressure in the vicinity of the turbine blades, which would seem an obvious subject to investigate. --></ref> Bats may be attracted to turbines, perhaps seeking roosts, increasing the death rate.<ref name="nww"/> Acoustic deterrents may help to reduce bat mortality at wind farms.<ref>{{cite book |last1=Johnson |first1=J. B. |first2=W. M. |last2=Ford |first3=J. L. |last3=Rodrigue |first4=J. W. |last4=Edwards |year=2012 |url=https://purl.fdlp.gov/GPO/gpo36973 |title=Effects of Acoustic Deterrents on Foraging Bats |publisher=U.S. Department of Agriculture, U.S. Forest Service, Northern Research Station |pages=1–5}}</ref>',
575 => '',
576 => 'The [[diagnosis]] and contribution of barotrauma to bat deaths near wind turbine blades have been disputed by other research comparing dead bats found near wind turbines with bats killed by impact with buildings in areas with no turbines.<ref name="Rollins et al.">{{cite journal |last1=Rollins |first1=K.E. |title=A Forensic Investigation Into the Etiology of Bat Mortality at a Wind Farm: Barotrauma or Traumatic Injury? |journal=Veterinary Pathology |volume=49 |issue=2 |date = January 2012 |last2=Meyerholz |first2=D. |last3=Johnson |first3=D. |last4=Capparella |first4=A. |last5=Loew |first5=S. |pages=362–371 |doi=10.1177/0300985812436745 |pmid=22291071 |s2cid=11189743 |doi-access= }}</ref>',
577 => '',
578 => '===Cultural significance<!--A link to here is in: Animal#In human culture.-->===',
579 => '',
580 => '[[File:Francisco José de Goya y Lucientes - The sleep of reason produces monsters (No. 43), from Los Caprichos - Google Art Project.jpg|thumb|upright|[[Francisco de Goya]], ''The Sleep of Reason Produces Monsters'', 1797]]',
581 => '',
582 => 'Since bats are mammals, yet can fly, they are considered to be [[liminal being]]s in various traditions.<ref>{{cite journal |last=McCracken |first=G. F. |title=Folklore and the Origin of Bats |journal=BATS Magazine |year=1993 |volume=11 |series=Bats in Folklore |issue=4}}</ref> In many cultures, including in Europe, bats are associated with darkness, death, witchcraft, and malevolence.<ref name="symbols">{{cite book |author=Chwalkowski, F. |year=2016 |title=Symbols in Arts, Religion and Culture: The Soul of Nature |publisher=Cambridge Scholars Publishing |page=523 |isbn=978-1443857284}}</ref> Among [[Native Americans in the United States|Native Americans]] such as the [[Creek (people)|Creek]], [[Cherokee]] and [[Apache Tribe|Apache]], the bat is identified as a [[trickster]].<ref>{{cite book|author=Chwalkowski, Farrin|year=2016|title=Symbols in Arts, Religion and Culture: The Soul of Nature|publisher=Cambridge Scholars Publishing|page=523|isbn=978-1443857284}}</ref> In Tanzania, a winged batlike creature known as [[Popobawa]] is believed to be a shapeshifting [[evil spirit]] that assaults and [[sodomises]] its victims.<ref>{{cite web |last=Saleh |first=A. |date=19 July 2001 |title=Sex-mad 'ghost' scares Zanzibaris |url=http://news.bbc.co.uk/1/hi/world/africa/1446733.stm |work=BBC News |access-date=29 December 2014}}</ref> In [[Aztec]] [[mythology]], bats symbolised the land of the dead, destruction, and decay.<ref>{{cite web |url=http://www.aztec-history.net/aztec_symbols |title=Aztec Symbols |publisher=Aztec-history.net |access-date=24 June 2013}}</ref><ref name=ReadGonzalez>{{cite book |author1=Read, K. A. |author2=Gonzalez, J. J. |year=2000 |title=Mesoamerican Mythology |publisher=Oxford University Press |pages=[https://archive.org/details/mesoamericanmyth0000read/page/132 132–134] |isbn=978-0195149098 |url=https://archive.org/details/mesoamericanmyth0000read/page/132 }}</ref><ref>{{cite web |url=http://www.oaxacanwoodcarving.com/mythnatr.html |title=Artists Inspired by Oaxaca Folklore Myths and Legends |publisher=Oaxacanwoodcarving.com |access-date=24 June 2013 |url-status=dead |archive-url=https://web.archive.org/web/20131110172458/http://www.oaxacanwoodcarving.com/mythnatr.html |archive-date=10 November 2013}}</ref><!--<ref>Berrin, Katherine & Larco Museum. ''The Spirit of Ancient Peru:Treasures from the [[Larco Museum|Museo Arqueológico Rafael Larco Herrera]].'' New York: [[Thames and Hudson]], 1997.</ref>--> An East Nigerian tale tells that the bat developed its nocturnal habits after causing the death of his partner, the bush-rat, and now hides by day to avoid arrest.<ref name=Arnott1962>{{cite book |author=Arnott, K. |year=1962 |title=African Myths and Legends |publisher=Oxford University Press |pages=150–152}}</ref>',
583 => '',
584 => 'More positive depictions of bats exist in some cultures. In China, bats have been associated with happiness, joy and good fortune. Five bats are used to symbolise the "Five Blessings": longevity, wealth, health, love of virtue and peaceful death.<ref>{{cite web|title=Chinese symbols|publisher=British Museum|access-date=10 September 2017|url=https://www.britishmuseum.org/pdf/Chinese_symbols_1109.pdf}}</ref> The bat is sacred in [[Tonga]] and is often considered the physical manifestation of a separable [[Soul (spirit)|soul]].<ref>{{cite web |author=Grant, G. S. |url=http://www.batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757 |title=Kingdom of Tonga: Safe Haven for Flying Foxes |publisher=Batcon.org |access-date=24 June 2013 |archive-date=12 August 2014 |archive-url=https://web.archive.org/web/20140812231111/http://batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757 |url-status=dead }}</ref> In the [[Zapotec civilisation]] of Mesoamerica, the bat god presided over corn and fertility.<ref>{{cite web|last1=Cartwright |first1=M. |title=Zapotec Civilization |url=https://www.worldhistory.org/Zapotec_Civilization/ |publisher=[[World History Encyclopedia]] |access-date=2 December 2017 |date=28 October 2013}}</ref>',
585 => '[[File:Bat god, Zapotec, Period III-A - Mesoamerican objects in the American Museum of Natural History - DSC06023.JPG|thumb|upright|left|[[Zapotec civilization|Zapotec]] bat god, [[Oaxaca]], 350–500 CE]]',
586 => '',
587 => 'The [[Weird Sisters]] in Shakespeare's ''[[Macbeth]]'' used the fur of a bat in their brew.<ref name="deVries76">{{cite book |last=de Vries |first=A. |title=Dictionary of Symbols and Imagery |year=1976 |page=[https://archive.org/details/dictionaryofsymb0000vrie/page/36 36] |publisher=North-Holland |location=Amsterdam |isbn=978-0-7204-8021-4 |url=https://archive.org/details/dictionaryofsymb0000vrie/page/36 }}</ref> In [[Western culture]], the bat is often a symbol of the night and its foreboding nature. The bat is a primary animal associated with fictional characters of the night, both villainous [[vampire]]s, such as [[Count Dracula]] and before him ''[[Varney the Vampire]]'',<ref>{{cite journal |last1=Miller |first1=Elizabeth |title=Bats, Vampires & Dracula |journal=Newsletter of the Florida Bat Conservation Centre |date=1998 |issue=Fall 1998 |url=http://www.ucs.mun.ca/~emiller/bats_vamp_drac.html |access-date=19 December 2017}}</ref> and heroes, such as the [[DC Comics]] character [[Batman]].<ref name=Fleisher>{{cite book |author=Fleisher, M. L. |title=The Encyclopedia of Comic Book Heroes Volume 1 Batman |publisher=Collier Books |year=1976 |isbn=978-0-02-080090-3 |page=31}}</ref> [[Kenneth Oppel]]'s [[Silverwing (series)|Silverwing novels]] narrate the adventures of a young bat,<ref>{{cite web |title=Silverwing by Kenneth Oppel |url=https://www.kirkusreviews.com/book-reviews/kenneth-oppel/silverwing/ |publisher=Kirkus Reviews |access-date=25 September 2017|year=1997}}</ref> based on the [[silver-haired bat]] of North America.<ref>{{cite web |last1=Oppel |first1=K. |title=The Characters: Shade |url=http://www.kennethoppel.ca/silverwing/shade.shtml |publisher=Kenneth Oppel |access-date=25 September 2017 |quote="Shade is based on a Silver-Haired Bat. I thought they were very dashing-looking creatures. I liked the fact this was a bat that lived in the same part of the world as me (eastern Canada). These are small creatures, with a wing span of a few inches. Their bodies are about the same size as mice. They're insectivores, which means they eat only insects." – K.O. |archive-url=https://web.archive.org/web/20170926043235/http://www.kennethoppel.ca/silverwing/shade.shtml |archive-date=26 September 2017 |url-status=dead}}</ref>',
588 => '',
589 => 'The bat is sometimes used as a [[Bat (heraldry)|heraldic symbol]] in Spain and France, appearing in the coats of arms of the towns of [[Valencia]], [[Palma de Mallorca]], [[Fraga]], [[Albacete]], and [[Montchauvet, Yvelines|Montchauvet]].<ref name="cervantesvirtual.com">{{cite web |url=http://www.cervantesvirtual.com/FichaObra.html?Ref=23879&portal=33 |author=Tramoyeres Blasco, L. |title=Lo Rat Penat en el escudo de armas de Valencia |trans-title=The Rat Penat in the coat of arms of Valencia |language=es |access-date=14 November 2014}}</ref><ref>{{cite book |author=Alomar i Canyelles, A. I. |title=L'Estendard, la festa nacional més antiga d'Europa |trans-title=The Banner, the oldest national party in Europe|pages=xiii–xxi |location=Palma |year=1998}}</ref><ref name="ifc.dpz.es">{{cite journal |title=Estudio de los escudos recogidos en la orla de latabla de la magistratura |trans-title=Study of the shields collected in the border of the board of the judiciary |url=http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf |url-status=dead |archive-url=https://web.archive.org/web/20170910130155/http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf |archive-date=10 September 2017 |journal=Emblemata Revista Aragonesa de Emblematica |year=2005 |language=es |volume=6 |page=242}}</ref> Three US states have an official [[List of U.S. state bats|state bat]]. Texas and Oklahoma are represented by the Mexican free-tailed bat, while Virginia is represented by the [[Virginia big-eared bat]] (''Corynorhinus townsendii virginianus'').<ref>{{cite web|url=http://www.netstate.com/states/tables/state_bats.htm |title=Official state bats |access-date=13 February 2011 |publisher=Netstate |archive-url=https://web.archive.org/web/20101220083516/http://netstate.com/states/tables/state_bats.htm |archive-date=20 December 2010 |url-status=dead}}</ref>',
590 => '',
591 => '===Economics===',
592 => '',
593 => 'Insectivorous bats in particular are especially helpful to farmers, as they control populations of agricultural pests and reduce the need to use [[pesticide]]s. It has been estimated that bats save the agricultural industry of the United States anywhere from [[USD|$]]3.7{{nbsp}}billion to $53{{nbsp}}billion per year in pesticides and damage to crops. This also prevents the overuse of pesticides, which can pollute the surrounding environment, and may lead to resistance in future generations of insects.<ref>{{cite journal |first1=Justin G. |last1=Boyles |first2=Paul M. |last2=Cryan |first3=Gary F. |last3=McCracken |first4=Thomas H. |last4=Kunz |year=2011 |title=Economic Importance of Bats in Agriculture |journal=Science |volume=332 |issue=6025 |pages=41–42 |doi=10.1126/science.1201366 |pmid=21454775|bibcode=2011Sci...332...41B |s2cid=34572622 }}</ref>',
594 => '',
595 => 'Bat dung, a type of [[guano]], is rich in nitrates and is mined from caves for use as [[fertiliser]].<ref>{{cite book |last=Weaver |first=H. D. |title=Missouri Caves in History and Legend |url=https://archive.org/details/missouricavesinh00weav |url-access=registration |year=2008 |publisher=University of Missouri Press |isbn=978-0-8262-6645-3 |pages=[https://archive.org/details/missouricavesinh00weav/page/64 64]–69}}</ref> During the [[US Civil War]], [[saltpetre]] was collected from caves to make [[gunpowder]]. At the time, it was believed that the nitrate all came from the bat guano, but it is now known that most of it is produced by [[nitrifying bacteria]].<ref>{{cite journal |last1=Whisonant |first1=R. C. |title=Geology and History of Confederate Saltpeter Cave Operations in Western Virginia |journal=Virginia Minerals |year=2001 |volume=47 |issue=4 |pages=33–43 |url=https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf |access-date=24 September 2017 |archive-date=27 December 2016 |archive-url=https://web.archive.org/web/20161227063809/https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf |url-status=dead }}</ref>',
596 => '',
597 => 'The [[Ann W. Richards Congress Avenue Bridge|Congress Avenue Bridge]] in [[Austin, Texas]], is the summer home to North America's largest urban bat colony, an estimated 1,500,000 Mexican free-tailed bats. About 100,000 tourists a year visit the bridge at twilight to watch the bats leave the roost.<ref>{{Cite web |author=Christensen, RaeAnn |url=http://www.fox7austin.com/news/local-news/165481229-story |title=Best time to see the bat colony emerge from Congress Bridge in Downtown Austin |publisher=Fox7 |access-date=21 August 2016 |archive-url=https://web.archive.org/web/20161019073438/http://www.fox7austin.com/news/local-news/165481229-story |archive-date=19 October 2016 |url-status=dead }}</ref>',
598 => '',
599 => '== See also ==',
600 => '* {{annotated link|Bat detector}}',
601 => '',
602 => '== Explanatory notes ==',
603 => '{{Notelist}}',
604 => '',
605 => '== References ==',
606 => '{{Reflist}}',
607 => '',
608 => '=== Sources ===',
609 => '* {{cite book |last=Altringham |first=J. D. |year=2011 |title=Bats: From Evolution to Conservation |publisher=Oxford University Press |isbn=978-0199207114 }}',
610 => '* {{cite book |last=Fenton |first=M. B. |year=2001 |title=Bats |publisher=Checkmark Books |isbn=978-0-8160-4358-3 }}',
611 => '* {{cite book |last1=Fenton |first1=M. B. |last2=Simmons |first2=N. B. |year=2015 |title=Bats: A World of Science and Mystery |publisher=University of Chicago Press |isbn=978-0226065120 }}',
612 => '',
613 => '== External links ==',
614 => '{{Commons category}}',
615 => '{{Wikibooks|Dichotomous Key|Chiroptera}}',
616 => '{{Wikispecies|Chiroptera}}',
617 => '* {{oweb|http://www.bats.org.uk/pages/about_bats.html}} of UK Bat Conservation Trust',
618 => '* [http://tolweb.org/tree?group=Chiroptera&contgroup=Eutheria Tree of Life]',
619 => '* [http://www.fladdermus.net/thesis.htm Microbat Vision] {{Webarchive|url=https://web.archive.org/web/20200129210527/http://www.fladdermus.net/thesis.htm |date=29 January 2020 }}',
620 => '* [http://www.hscott.net/the-dsp-behind-bat-echolocation/ Analyses of several kinds of bat echolocation]',
621 => '',
622 => '{{Mammals}}',
623 => '{{Taxonbar|from=Q28425}}',
624 => '{{Authority control}}',
625 => '',
626 => '[[Category:Bats| ]]',
627 => '[[Category:Animal flight]]',
628 => '[[Category:Animals that use echolocation]]',
629 => '[[Category:Articles containing video clips]]',
630 => '[[Category:Cave mammals]]',
631 => '[[Category:Extant Ypresian first appearances]]',
632 => '[[Category:Nocturnal animals]]',
633 => '[[Category:Taxa named by Johann Friedrich Blumenbach]]'
] |
All external links added in the edit (added_links ) | [] |
All external links removed in the edit (removed_links ) | [
0 => 'http://www.edgeofexistence.org/mammals/species_info.php?id=49',
1 => 'http://www.bats.org.uk/pages/bats_of_the_world.html',
2 => 'https://web.archive.org/web/20110105143810/http://www.bats.org.uk/pages/bats_of_the_world.html',
3 => 'http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html',
4 => 'https://web.archive.org/web/20070606114143/http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html',
5 => 'http://jeb.biologists.org/content/203/20/3045',
6 => 'http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html',
7 => 'http://www.si.edu/Encyclopedia_SI/nmnh/batfacts.htm',
8 => 'http://www.life.umd.edu/faculty/wilkinson/Wilk_South02.pdf',
9 => 'http://www.sciam.com/article.cfm?id=going-to-bat',
10 => 'http://www.livescience.com/26898-bats-host-human-infecting-viruses.html',
11 => 'http://www.iflscience.com/plants-and-animals/why-do-bats-transmit-so-many-diseases/',
12 => 'https://books.google.com/books?id=Li6_BAAAQBAJ',
13 => 'https://books.google.com/books?id=lN0pCwAAQBAJ',
14 => 'http://news.bbc.co.uk/1/hi/world/africa/1446733.stm',
15 => 'http://www.aztec-history.net/aztec_symbols',
16 => 'http://www.oaxacanwoodcarving.com/mythnatr.html',
17 => 'http://www.batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757',
18 => 'http://www.netstate.com/states/tables/state_bats.htm',
19 => 'http://www.bats.org.uk/pages/about_bats.html',
20 => 'http://tolweb.org/tree?group=Chiroptera&contgroup=Eutheria',
21 => 'http://www.fladdermus.net/thesis.htm',
22 => 'http://www.hscott.net/the-dsp-behind-bat-echolocation/',
23 => 'https://www.cdc.gov/features/bats/',
24 => 'http://www.cervantesvirtual.com/FichaObra.html?Ref=23879&portal=33',
25 => 'http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf',
26 => 'https://books.google.com/books?id=KG86AgWwFEUC&pg=PA136',
27 => 'http://www.psu.edu/dept/nkbiology/naturetrail/speciespages/little_brown_bat.html',
28 => 'https://www.nybg.org/botany/tlobova/mori/batsplants/batdispersal/batdispersal_frameset.htm',
29 => 'https://www.livescience.com/33258-bats-hate-rain.html',
30 => 'http://www.life.umd.edu/faculty/wilkinson/Wilk_AB86.pdf',
31 => 'http://www.life.umd.edu/faculty/wilkinson/Wilk_BES85b.pdf',
32 => 'https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf',
33 => 'https://www.kirkusreviews.com/book-reviews/kenneth-oppel/silverwing/',
34 => 'http://www.kennethoppel.ca/silverwing/shade.shtml',
35 => 'https://books.google.com/books?id=gI-Sly7oq7QC&pg=PA43',
36 => 'http://www.fox7austin.com/news/local-news/165481229-story',
37 => 'https://web.archive.org/web/20130623184422/http://batcon.org/',
38 => 'http://www.batcon.org/',
39 => 'https://www.flmnh.ufl.edu/index.php/bats/home/',
40 => 'https://web.archive.org/web/20120512092008/http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf',
41 => 'http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf',
42 => 'http://news.bbc.co.uk/1/hi/england/4885642.stm',
43 => 'http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/7330846.stm',
44 => 'http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/8320610.stm',
45 => 'https://books.google.com/books?id=DJDKaxEEfYgC&pg=PA51',
46 => 'http://www.wind-watch.org/news/2008/09/23/bc-study-to-help-bats-survive-wind-farms/',
47 => 'https://www.newscientist.com/article/dn11834',
48 => 'http://vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf',
49 => 'https://web.archive.org/web/20060523210423/http://www.vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf',
50 => 'https://web.archive.org/web/20060210183113/http://batcon.org/wind/BWEC2004finalreport.pdf',
51 => 'http://batcon.org/wind/BWEC2004finalreport.pdf',
52 => 'https://purl.fdlp.gov/GPO/gpo36973',
53 => 'https://books.google.com/books?id=nA0TDAAAQBAJ&pg=PA14',
54 => 'https://viterbi.usc.edu/news/news/2008/leading-edge-vortex.htm',
55 => 'http://jeb.biologists.org/content/jexbio/57/2/317.full.pdf',
56 => 'https://scitechdaily.com/kittis-hog-nosed-bat-is-worlds-smallest-mammal/',
57 => 'http://www.batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf',
58 => 'http://www.bats.org.uk/pages/bats_and_the_law.html',
59 => 'http://www.batcon.org/about-us/about-bci/mission-vision',
60 => 'http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf',
61 => 'http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/',
62 => 'http://philadelphia.cbslocal.com/2013/11/14/pennsylvanias-bats-nearly-wiped-out/',
63 => 'http://o.canada.com/technology/white-nose-syndrome-killing-canadas-bats',
64 => 'https://www.whitenosesyndrome.org/sites/default/files/files/wns_illinois_detection_final_upload.pdf',
65 => 'https://tpwd.texas.gov/newsmedia/releases/?req=20170323c',
66 => 'https://web.archive.org/web/20170910130155/http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf',
67 => 'http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf',
68 => 'http://www.ucs.mun.ca/~emiller/bats_vamp_drac.html',
69 => 'http://www.uwyo.edu/cmdelrio/site/publications_files/bats,%20isotopes,%20and%20kidneys.pdf',
70 => 'http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf',
71 => 'http://www.thefreelibrary.com/Canada+:+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192',
72 => 'https://web.archive.org/web/20131110172458/http://www.oaxacanwoodcarving.com/mythnatr.html',
73 => 'http://www.cwhc-rcsf.ca/wns.php',
74 => 'https://d-nb.info/gnd/4154574-6',
75 => 'https://id.ndl.go.jp/auth/ndlna/00566532',
76 => 'https://gd.eppo.int/taxon/1CHIRO',
77 => 'http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:12623',
78 => 'https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9397',
79 => 'https://www.gbif.org/species/734',
80 => 'https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=179985',
81 => 'https://www.nsf.gov/news/news_summ.jsp?cntn_id=124679',
82 => 'http://www.bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf',
83 => 'https://data.nbn.org.uk/Taxa/NHMSYS0000376160',
84 => 'https://web.archive.org/web/20170926043235/http://www.kennethoppel.ca/silverwing/shade.shtml',
85 => 'https://animaldiversity.org/accounts/Chiroptera/',
86 => 'https://fauna-eu.org/cdm_dataportal/taxon/e20b0e88-8a89-45f4-bd6d-b81287fad0ac',
87 => 'https://purl.fdlp.gov/GPO/gpo117356',
88 => 'https://jeb.biologists.org/content/56/1/37',
89 => 'https://ui.adsabs.harvard.edu/abs/2013PLoSO...872770S',
90 => 'https://ui.adsabs.harvard.edu/abs/2008PLoSO...3.2036S',
91 => 'https://ui.adsabs.harvard.edu/abs/2004ASAJ..116.3701M',
92 => 'https://ui.adsabs.harvard.edu/abs/2009ASAJ..125.3454K',
93 => 'https://ui.adsabs.harvard.edu/abs/2009PLoSO...4.6390M',
94 => 'https://ui.adsabs.harvard.edu/abs/2010PLoSO...5.8838S',
95 => 'https://ui.adsabs.harvard.edu/abs/2014PLoSO...9k5724M',
96 => 'https://ui.adsabs.harvard.edu/abs/2013PLoSO...877183G',
97 => 'https://ui.adsabs.harvard.edu/abs/2011PLoSO...627114C',
98 => 'https://ui.adsabs.harvard.edu/abs/2007PLoSO...2..205P',
99 => 'https://ui.adsabs.harvard.edu/abs/1990SciAm.262b..76W',
100 => 'https://ui.adsabs.harvard.edu/abs/2011Natur.480..376L',
101 => 'https://ui.adsabs.harvard.edu/abs/2010Sci...329..679F',
102 => 'https://ui.adsabs.harvard.edu/abs/2005Natur.438..575L',
103 => 'https://ui.adsabs.harvard.edu/abs/2005Sci...310..676L',
104 => 'https://ui.adsabs.harvard.edu/abs/2009PLoSO...4.6746B',
105 => 'https://ui.adsabs.harvard.edu/abs/2016NatSR...639419P',
106 => 'https://ui.adsabs.harvard.edu/abs/2011Sci...332...41B',
107 => 'https://archive.org/details/walkersmammalsof01nowa/page/1629',
108 => 'https://archive.org/details/dictionaryofsymb0000vrie/page/36',
109 => 'https://www.britishmuseum.org/pdf/Chinese_symbols_1109.pdf',
110 => 'https://archive.org/details/missouricavesinh00weav',
111 => 'https://archive.org/details/missouricavesinh00weav/page/64',
112 => 'https://www.marinespecies.org/aphia.php?p=taxdetails&id=1037271',
113 => 'https://archive.org/details/mesoamericanmyth0000read/page/132',
114 => 'https://www.zoosprint.zooreach.org/index.php/zp/article/view/5669/5086',
115 => 'https://www.cdc.gov/vhf/ebola/about.html',
116 => 'https://api.semanticscholar.org/CorpusID:43601856',
117 => 'https://api.semanticscholar.org/CorpusID:2971923',
118 => 'https://books.google.com/books?id=f1aNgZwGsYoC',
119 => 'https://web.archive.org/web/20171215000829/http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf',
120 => 'https://web.archive.org/web/20190930212052/https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/',
121 => 'https://web.archive.org/web/20161019073438/http://www.fox7austin.com/news/local-news/165481229-story',
122 => 'https://www.iucnredlist.org/search/stats',
123 => 'https://api.semanticscholar.org/CorpusID:25361258',
124 => 'https://api.semanticscholar.org/CorpusID:23782948',
125 => 'https://api.semanticscholar.org/CorpusID:4381156',
126 => 'https://api.semanticscholar.org/CorpusID:82956979',
127 => 'https://api.semanticscholar.org/CorpusID:4403209',
128 => 'https://api.semanticscholar.org/CorpusID:84007133',
129 => 'https://zenodo.org/record/3949088',
130 => 'https://api.semanticscholar.org/CorpusID:11214563',
131 => 'https://api.semanticscholar.org/CorpusID:27019675',
132 => 'https://api.semanticscholar.org/CorpusID:17019562',
133 => 'https://api.semanticscholar.org/CorpusID:34572622',
134 => 'https://www.wikidata.org/wiki/Q28425#identifiers',
135 => 'https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo',
136 => 'https://www.worldatlas.com/articles/bat-species.html',
137 => 'https://www.theguardian.com/news/2018/jun/12/the-last-bat-the-mystery-of-britains-most-solitary-animal',
138 => 'https://api.semanticscholar.org/CorpusID:90531252',
139 => 'https://api.semanticscholar.org/CorpusID:32118961',
140 => 'https://books.google.com/books?id=Gtp4yWnPD9YC&q=Biology+Bats',
141 => 'https://books.google.com/books?id=cueMBgAAQBAJ&q=bat+breeding+seasons&pg=PT100',
142 => 'https://api.semanticscholar.org/CorpusID:855367',
143 => 'https://academic.oup.com/jue/article/5/1/juz015/5572591',
144 => 'http://www.boldsystems.org/index.php/TaxBrowser_TaxonPage?taxid=329',
145 => 'https://web.archive.org/web/20121020143210/http://batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf',
146 => 'https://web.archive.org/web/20140812231111/http://batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757',
147 => 'https://eol.org/pages/7631',
148 => 'https://www.worldhistory.org/Zapotec_Civilization/',
149 => 'https://web.archive.org/web/20180310034326/http://bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf',
150 => 'https://catalogue.bnf.fr/ark:/12148/cb137569195',
151 => 'https://data.bnf.fr/ark:/12148/cb137569195',
152 => 'https://ui.adsabs.harvard.edu/abs/2002PNAS...99.1431T',
153 => 'https://biodiversity.org.au/afd/taxa/Chiroptera',
154 => 'https://web.archive.org/web/20201001170139/https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo',
155 => 'https://web.archive.org/web/20160819233333/http://www.edgeofexistence.org/mammals/species_info.php?id=49',
156 => 'https://ui.adsabs.harvard.edu/abs/1992Sci...256...86B',
157 => 'https://digitalcommons.usf.edu/kip_articles/143',
158 => 'https://www.irmng.org/aphia.php?p=taxdetails&id=11220',
159 => 'https://api.semanticscholar.org/CorpusID:247675112',
160 => 'https://api.semanticscholar.org/CorpusID:86327074',
161 => 'https://www.departments.bucknell.edu/biology/resources/msw3/browse.asp?s=y&id=13800001',
162 => 'https://www.nzor.org.nz/names/13d7c9ab-d55f-43cb-b2c1-b914a12c6c67',
163 => 'https://treatment.plazi.org/id/C11B87BD-FF82-BF1B-9994-FB30FA317197',
164 => 'https://api.semanticscholar.org/CorpusID:198969258',
165 => 'https://api.semanticscholar.org/CorpusID:198968973',
166 => 'https://web.archive.org/web/20101220083516/http://netstate.com/states/tables/state_bats.htm',
167 => 'https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph115133&CON_LNG=ENG',
168 => 'https://api.semanticscholar.org/CorpusID:12460893',
169 => 'https://www.catalogueoflife.org/data/taxon/XC',
170 => 'https://web.archive.org/web/20200129210527/http://www.fladdermus.net/thesis.htm',
171 => 'https://ui.adsabs.harvard.edu/abs/2020PNAS..117.9423M',
172 => 'https://doi.org/10.1126%2Fscience.1301735',
173 => 'https://pubmed.ncbi.nlm.nih.gov/1301735',
174 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038382',
175 => 'https://doi.org/10.1371%2Fcurrents.RRN1212',
176 => 'https://pubmed.ncbi.nlm.nih.gov/21327164',
177 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375846',
178 => 'https://doi.org/10.1111%2Fj.1469-7580.2007.00817.x',
179 => 'https://pubmed.ncbi.nlm.nih.gov/17971117',
180 => 'https://doi.org/10.1242%2Fjeb.203.20.3045',
181 => 'https://pubmed.ncbi.nlm.nih.gov/11003817',
182 => 'https://doi.org/10.1242%2Fjeb.56.1.37',
183 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936036',
184 => 'https://doi.org/10.1098%2Frspb.2016.0636',
185 => 'https://pubmed.ncbi.nlm.nih.gov/27335420',
186 => 'https://doi.org/10.1016%2F0034-5687(81)90009-8',
187 => 'https://pubmed.ncbi.nlm.nih.gov/7330485',
188 => 'https://www.worldcat.org/oclc/857980151',
189 => 'https://doi.org/10.1017%2Fs0016672309000032',
190 => 'https://pubmed.ncbi.nlm.nih.gov/19393126',
191 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235709',
192 => 'https://pubmed.ncbi.nlm.nih.gov/649500',
193 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760910',
194 => 'https://doi.org/10.1371%2Fjournal.pone.0072770',
195 => 'https://pubmed.ncbi.nlm.nih.gov/24019876',
196 => 'https://doi.org/10.1078%2F0944-2006-00007',
197 => 'https://pubmed.ncbi.nlm.nih.gov/16351819',
198 => 'https://doi.org/10.1093%2Ficb%2F13.4.1215',
199 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323577',
200 => 'https://doi.org/10.1371%2Fjournal.pone.0002036',
201 => 'https://pubmed.ncbi.nlm.nih.gov/18446226',
202 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122208',
203 => 'https://doi.org/10.1073%2Fpnas.022477199',
204 => 'https://pubmed.ncbi.nlm.nih.gov/11805285',
205 => 'https://doi.org/10.1121%2F1.1815133',
206 => 'https://pubmed.ncbi.nlm.nih.gov/15658720',
207 => 'https://doi.org/10.2307%2F3546476',
208 => 'https://www.jstor.org/stable/3546476',
209 => 'https://doi.org/10.1121%2F1.3097500',
210 => 'https://pubmed.ncbi.nlm.nih.gov/19425684',
211 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712075',
212 => 'https://doi.org/10.1371%2Fjournal.pone.0006390',
213 => 'https://pubmed.ncbi.nlm.nih.gov/19636375',
214 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809114',
215 => 'https://doi.org/10.1371%2Fjournal.pone.0008838',
216 => 'https://pubmed.ncbi.nlm.nih.gov/20098620',
217 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486538',
218 => 'https://doi.org/10.1007%2Fs00360-017-1100-y',
219 => 'https://pubmed.ncbi.nlm.nih.gov/28432393',
220 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119008',
221 => 'https://doi.org/10.1098%2Frspb.2010.2290',
222 => 'https://pubmed.ncbi.nlm.nih.gov/21208959',
223 => 'https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.581.38',
224 => 'https://doi.org/10.1016%2FS0306-4565(98)00033-3',
225 => 'https://doi.org/10.1016%2F0010-406X(67)90601-9',
226 => 'https://doi.org/10.1093%2Ficb%2Ficr042',
227 => 'https://pubmed.ncbi.nlm.nih.gov/21700575',
228 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281203',
229 => 'https://doi.org/10.1371%2Fjournal.pone.0115724',
230 => 'https://pubmed.ncbi.nlm.nih.gov/25551615',
231 => 'https://doi.org/10.1139%2Fz94-100',
232 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795000',
233 => 'https://doi.org/10.1371%2Fjournal.pone.0077183',
234 => 'https://pubmed.ncbi.nlm.nih.gov/24130851',
235 => 'https://doi.org/10.1644%2F05-MAMM-A-424R2.1',
236 => 'https://doi.org/10.1242%2Fjeb.57.2.317',
237 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1772916',
238 => 'https://doi.org/10.1136%2Fbjo.2005.077966',
239 => 'https://pubmed.ncbi.nlm.nih.gov/16267906',
240 => 'https://doi.org/10.1111%2Fj.1469-7998.1990.tb04296.x',
241 => 'https://doi.org/10.1034%2Fj.1600-0706.2000.880109.x',
242 => 'https://doi.org/10.1515%2Fmammalia-2017-0128',
243 => 'https://doi.org/10.1111%2Fj.1469-7998.1975.tb02248.x',
244 => 'https://www.jstor.org/stable/30055364',
245 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206078',
246 => 'https://doi.org/10.1371%2Fjournal.pone.0027114',
247 => 'https://pubmed.ncbi.nlm.nih.gov/22069493',
248 => 'https://doi.org/10.1016%2F0305-0491(80)90131-5',
249 => 'https://doi.org/10.1093%2Fmolbev%2Fmsq286',
250 => 'https://pubmed.ncbi.nlm.nih.gov/21037206',
251 => 'https://doi.org/10.1093%2Fjmammal%2Fgyy044',
252 => 'https://doi.org/10.1093%2Fjue%2Fjuz015',
253 => 'https://doi.org/10.1093%2Ficb%2Ficn033',
254 => 'https://pubmed.ncbi.nlm.nih.gov/21669777',
255 => 'https://doi.org/10.1146%2Fannurev.ento.34.1.17',
256 => 'https://doi.org/10.1016%2Fj.physbeh.2016.08.016',
257 => 'https://pubmed.ncbi.nlm.nih.gov/27542518',
258 => 'https://doi.org/10.1644%2F1545-1410(2001)662%3C0001:aj%3E2.0.co;2',
259 => 'https://doi.org/10.2307%2F1383205',
260 => 'https://www.jstor.org/stable/1383205',
261 => 'https://doi.org/10.1111%2Fj.1744-7429.2001.tb00206.x',
262 => 'https://doi.org/10.1111%2Fj.1744-7429.2003.tb00606.x',
263 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1784064',
264 => 'https://doi.org/10.1371%2Fjournal.pone.0000205',
265 => 'https://pubmed.ncbi.nlm.nih.gov/17299585',
266 => 'https://doi.org/10.1644%2F1545-1410(2001)656%3C0001:TC%3E2.0.CO;2',
267 => 'https://doi.org/10.1007%2FBF00184422',
268 => 'https://doi.org/10.1038%2Fscientificamerican0290-76',
269 => 'https://doi.org/10.1111%2Fj.1095-8312.1995.tb01031.x',
270 => 'https://doi.org/10.1590%2FS0101-81752007000300036',
271 => 'https://doi.org/10.1111%2Fbrv.12021',
272 => 'https://pubmed.ncbi.nlm.nih.gov/23347323',
273 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673352',
274 => 'https://doi.org/10.1051%2Fparasite%2F2020051',
275 => 'https://www.worldcat.org/issn/1776-1042',
276 => 'https://pubmed.ncbi.nlm.nih.gov/33206593',
277 => 'https://doi.org/10.1038%2Fnature10590',
278 => 'https://pubmed.ncbi.nlm.nih.gov/22031324',
279 => 'https://doi.org/10.1126%2Fscience.1188594',
280 => 'https://pubmed.ncbi.nlm.nih.gov/20689016',
281 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169091',
282 => 'https://doi.org/10.1002%2Frmv.520',
283 => 'https://pubmed.ncbi.nlm.nih.gov/17042030',
284 => 'https://doi.org/10.20506%2Frst.19.1.1221',
285 => 'https://pubmed.ncbi.nlm.nih.gov/11189715',
286 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539106',
287 => 'https://doi.org/10.1128%2FCMR.00017-06',
288 => 'https://pubmed.ncbi.nlm.nih.gov/16847084',
289 => 'https://doi.org/10.1007%2F978-94-007-4899-6_12',
290 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097447',
291 => 'https://doi.org/10.1038%2Fnrmicro1323',
292 => 'https://pubmed.ncbi.nlm.nih.gov/16357858',
293 => 'https://doi.org/10.1099%2F0022-1317-81-8-1927',
294 => 'https://pubmed.ncbi.nlm.nih.gov/10900029',
295 => 'https://doi.org/10.1038%2F438575a',
296 => 'https://pubmed.ncbi.nlm.nih.gov/16319873',
297 => 'https://doi.org/10.1016%2Fj.aogh.2015.02.005',
298 => 'https://pubmed.ncbi.nlm.nih.gov/25960093',
299 => 'https://doi.org/10.1002%2F9781118818824.ch11',
300 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196766',
301 => 'https://doi.org/10.1073%2Fpnas.1919176117',
302 => 'https://pubmed.ncbi.nlm.nih.gov/32284401',
303 => 'https://doi.org/10.1126%2Fscience.1120872',
304 => 'https://pubmed.ncbi.nlm.nih.gov/16254175',
305 => 'https://doi.org/10.1126%2Fscience.1118391',
306 => 'https://pubmed.ncbi.nlm.nih.gov/16195424',
307 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708621',
308 => 'https://doi.org/10.1371%2Fjournal.ppat.1006698',
309 => 'https://pubmed.ncbi.nlm.nih.gov/29190287',
310 => 'https://www.worldcat.org/issn/0261-3077',
311 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145188',
312 => 'https://doi.org/10.1098%2Frspb.2010.2718',
313 => 'https://pubmed.ncbi.nlm.nih.gov/21307051',
314 => 'https://doi.org/10.1111%2Fbij.12381',
315 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913674',
316 => 'https://doi.org/10.4161%2Fcib.25783',
317 => 'https://pubmed.ncbi.nlm.nih.gov/24505498',
318 => 'https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.539.5104',
319 => 'https://doi.org/10.1016%2Fs0003-3472(86)80274-3',
320 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727915',
321 => 'https://doi.org/10.1371%2Fjournal.pone.0006746',
322 => 'https://pubmed.ncbi.nlm.nih.gov/19707550',
323 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1688873',
324 => 'https://doi.org/10.1098%2Frspb.1998.0286',
325 => 'https://pubmed.ncbi.nlm.nih.gov/9493408',
326 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5178335',
327 => 'https://doi.org/10.1038%2Fsrep39419',
328 => 'https://pubmed.ncbi.nlm.nih.gov/28005079',
329 => 'https://doi.org/10.1007%2FBF00299244',
330 => 'https://doi.org/10.1007%2Fbf00292559',
331 => 'https://www.jstor.org/stable/4599268',
332 => 'https://doi.org/10.1644%2FBME-004',
333 => 'https://doi.org/10.1111%2Fjzo.12069',
334 => 'https://doi.org/10.1111%2Fj.1439-0310.1977.tb02120.x',
335 => 'https://doi.org/10.2307%2F1295789',
336 => 'https://www.jstor.org/stable/1295789',
337 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177628',
338 => 'https://doi.org/10.1098%2Frspb.2011.0190',
339 => 'https://pubmed.ncbi.nlm.nih.gov/21450735',
340 => 'https://doi.org/10.1046%2Fj.1474-9728.2002.00020.x',
341 => 'https://pubmed.ncbi.nlm.nih.gov/12882342',
342 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714502',
343 => 'https://doi.org/10.1186%2Fs12898-016-0056-1',
344 => 'https://pubmed.ncbi.nlm.nih.gov/26767616',
345 => 'https://doi.org/10.1016%2Fj.cub.2008.06.029',
346 => 'https://pubmed.ncbi.nlm.nih.gov/18727900',
347 => 'https://www.worldcat.org/oclc/252616082',
348 => 'https://doi.org/10.1126%2Fscience.1201366',
349 => 'https://pubmed.ncbi.nlm.nih.gov/21454775',
350 => 'https://web.archive.org/web/20190328065456/https://www.thefreelibrary.com/Canada+:+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192',
351 => 'https://web.archive.org/web/20171117002846/http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf',
352 => 'https://web.archive.org/web/20161227063809/https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf',
353 => 'https://id.loc.gov/authorities/sh85012393',
354 => 'https://zenodo.org/record/8204807',
355 => 'https://zenodo.org/record/8204647',
356 => 'https://doi.org/10.1177%2F0300985812436745',
357 => 'https://pubmed.ncbi.nlm.nih.gov/22291071',
358 => 'https://api.semanticscholar.org/CorpusID:11189743',
359 => 'https://inaturalist.org/taxa/40268',
360 => 'https://web.archive.org/web/20071230022439/http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html',
361 => 'http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007282580905171',
362 => 'https://ui.adsabs.harvard.edu/abs/1998Oikos..81..143P',
363 => 'https://ui.adsabs.harvard.edu/abs/2000Oikos..88...75S',
364 => 'https://ui.adsabs.harvard.edu/abs/2001Biotr..33..520H',
365 => 'https://ui.adsabs.harvard.edu/abs/2003Biotr..35..491H',
366 => 'https://ui.adsabs.harvard.edu/abs/2016BMCE...16....2G',
367 => 'https://web.archive.org/web/20200921025300/http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf',
368 => 'https://web.archive.org/web/20200216145004/http://www.cwhc-rcsf.ca/wns.php',
369 => 'https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Chiroptera',
370 => 'http://www.dictionary.com/browse/bat?s=ts',
371 => 'http://www.etymonline.com/index.php?term=bat',
372 => 'https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry%3Dxei/r',
373 => 'https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry%3Dptero/n',
374 => 'https://doi.org/10.1007%2Fs10914-009-9118-x',
375 => 'https://doi.org/10.1671%2F039.029.0204',
376 => 'https://doi.org/10.1098%2Frsbl.2021.0185',
377 => 'https://doi.org/10.1038%2Fnature06549',
378 => 'https://doi.org/10.1371%2Fjournal.pone.0283505',
379 => 'https://doi.org/10.1073%2Fpnas.1509831112',
380 => 'https://doi.org/10.1644%2F1545-1542(2004)085%3C0321:Prarcf%3E2.0.Co;2',
381 => 'https://doi.org/10.1093%2Fmolbev%2Fmsi180',
382 => 'https://doi.org/10.1007%2FPL00006430',
383 => 'https://doi.org/10.1093%2Fsysbio%2Fsyr089',
384 => 'https://doi.org/10.1016%2Fj.cub.2013.09.014',
385 => 'https://doi.org/10.1126%2Fscience.1230835',
386 => 'https://doi.org/10.1016%2Fj.cub.2019.04.048',
387 => 'https://doi.org/10.1101%2F014308',
388 => 'https://doi.org/10.1016%2Fj.ympev.2015.04.027',
389 => 'https://doi.org/10.1007%2Fs11230-011-9339-2',
390 => 'https://doi.org/10.1126%2Fscience.1105113',
391 => 'https://doi.org/10.1086%2F587825',
392 => 'https://doi.org/10.1038%2Fnature.2011.9304',
393 => 'https://doi.org/10.1038%2F35003188',
394 => 'https://doi.org/10.1073%2Fpnas.111551998',
395 => 'https://doi.org/10.1371%2Fjournal.pone.0000900',
396 => 'https://doi.org/10.1073%2Fpnas.0802097105',
397 => 'https://doi.org/10.1038%2Fs41559-016-0021',
398 => 'https://doi.org/10.1038%2Fsrep27726',
399 => 'https://doi.org/10.1023%2FB:JOMM.0000047340.25620.89',
400 => 'https://doi.org/10.1242%2Fjeb.01288',
401 => 'https://doi.org/10.1016%2FS0169-5347(01)02246-7',
402 => 'https://doi.org/10.2307%2F3503895',
403 => 'https://doi.org/10.1111%2F1365-2435.12447',
404 => 'https://doi.org/10.1038%2Fsj.embor.7401050',
405 => 'https://doi.org/10.1098%2Frsos.160398',
406 => 'https://doi.org/10.1007/BF00418147',
407 => 'https://doi.org/10.1007%2FBF00418147',
408 => 'https://doi.org/10.1371%2Fjournal.pone.0213781',
409 => 'https://doi.org/10.1073%2Fpnas.0509716103',
410 => 'https://doi.org/10.1242%2Fjeb.190.1.195',
411 => 'https://doi.org/10.1016%2Fj.celrep.2015.04.001',
412 => 'https://doi.org/10.1098%2Frspb.2012.0346',
413 => 'https://doi.org/10.1080%2F08998280.2006.11928217',
414 => 'https://doi.org/10.1073%2Fpnas.1018740108',
415 => 'https://doi.org/10.1093%2Fjmammal%2Fgyy050',
416 => 'https://doi.org/10.1038%2Fnews.2011.376',
417 => 'https://doi.org/10.2307%2F1381085',
418 => 'https://doi.org/10.1242%2Fjeb.02186',
419 => 'https://doi.org/10.1098%2Frstl.1852.0011',
420 => 'https://doi.org/10.1152%2Fajpregu.00635.2011',
421 => 'https://doi.org/10.1098%2FRspb.2006.0200',
422 => 'https://doi.org/10.1242%2Fjeb.073171',
423 => 'https://doi.org/10.1126%2Fscience.1174096',
424 => 'https://doi.org/10.1007%2Fs00114-005-0611-7',
425 => 'https://doi.org/10.1242%2Fjeb.024620',
426 => 'https://doi.org/10.1007%2F978-3-642-40462-7_2',
427 => 'https://doi.org/10.1371%2Fjournal.pone.0013144',
428 => 'https://doi.org/10.1093%2Fmolbev%2Fmsh015',
429 => 'https://doi.org/10.1098%2Frspb.2007.0904',
430 => 'https://doi.org/10.1371%2Fjournal.pone.0123205',
431 => 'https://doi.org/10.1111%2Fjzo.12105',
432 => 'https://doi.org/10.1007%2Fs00114-009-0606-x',
433 => 'https://doi.org/10.1242%2Fjeb.074823',
434 => 'https://doi.org/10.1080%2F23328940.2016.1214334',
435 => 'https://api.semanticscholar.org/CorpusID:5923450',
436 => 'https://api.semanticscholar.org/CorpusID:86384840',
437 => 'https://api.semanticscholar.org/CorpusID:4356708',
438 => 'https://api.semanticscholar.org/CorpusID:22900642',
439 => 'https://api.semanticscholar.org/CorpusID:31192292',
440 => 'https://api.semanticscholar.org/CorpusID:155105169',
441 => 'https://api.semanticscholar.org/CorpusID:13433327',
442 => 'https://api.semanticscholar.org/CorpusID:14469619',
443 => 'https://api.semanticscholar.org/CorpusID:25912333',
444 => 'https://api.semanticscholar.org/CorpusID:21638734',
445 => 'https://api.semanticscholar.org/CorpusID:84015350',
446 => 'https://api.semanticscholar.org/CorpusID:205004782',
447 => 'https://api.semanticscholar.org/CorpusID:29068452',
448 => 'https://api.semanticscholar.org/CorpusID:11528722',
449 => 'https://api.semanticscholar.org/CorpusID:2715542',
450 => 'https://api.semanticscholar.org/CorpusID:38538056',
451 => 'https://api.semanticscholar.org/CorpusID:18305396',
452 => 'https://api.semanticscholar.org/CorpusID:52937127',
453 => 'https://api.semanticscholar.org/CorpusID:405317',
454 => 'https://api.semanticscholar.org/CorpusID:206520028',
455 => 'https://api.semanticscholar.org/CorpusID:18306198',
456 => 'https://api.semanticscholar.org/CorpusID:9499097',
457 => 'https://www.tandfonline.com/doi/full/10.1671/039.029.0204',
458 => 'https://ui.adsabs.harvard.edu/abs/2009JVPal..29..627T',
459 => 'https://ui.adsabs.harvard.edu/abs/2008Natur.451..818S',
460 => 'https://ui.adsabs.harvard.edu/abs/2023PLoSO..1883505R',
461 => 'https://ui.adsabs.harvard.edu/abs/2015PNAS..11212592C',
462 => 'https://ui.adsabs.harvard.edu/abs/1998JMolE..47..709P',
463 => 'https://ui.adsabs.harvard.edu/abs/2013Sci...339..456Z',
464 => 'https://ui.adsabs.harvard.edu/abs/2005Sci...307..580T',
465 => 'https://ui.adsabs.harvard.edu/abs/2000Natur.403..188T',
466 => 'https://ui.adsabs.harvard.edu/abs/2001PNAS...98.6241S',
467 => 'https://ui.adsabs.harvard.edu/abs/2007PLoSO...2..900L',
468 => 'https://ui.adsabs.harvard.edu/abs/2008PNAS..10513959L',
469 => 'https://ui.adsabs.harvard.edu/abs/2017NatEE...1...21W',
470 => 'https://ui.adsabs.harvard.edu/abs/2016NatSR...627726L',
471 => 'https://ui.adsabs.harvard.edu/abs/2015FuEco..29.1411S',
472 => 'https://ui.adsabs.harvard.edu/abs/2016RSOS....360398M',
473 => 'https://ui.adsabs.harvard.edu/abs/2019PLoSO..1413781T',
474 => 'https://ui.adsabs.harvard.edu/abs/2006PNAS..103.6581S',
475 => 'https://ui.adsabs.harvard.edu/abs/2011PNAS..10811291S',
476 => 'https://ui.adsabs.harvard.edu/abs/2009Sci...325..325C',
477 => 'https://ui.adsabs.harvard.edu/abs/2005NW.....92..164H',
478 => 'https://ui.adsabs.harvard.edu/abs/2010PLoSO...513144T',
479 => 'https://ui.adsabs.harvard.edu/abs/2015PLoSO..1023205T',
480 => 'https://ui.adsabs.harvard.edu/abs/2010NW.....97...29S',
481 => 'https://www.worldcat.org/issn/0272-4634',
482 => 'https://www.worldcat.org/issn/1744-957X',
483 => 'https://www.worldcat.org/issn/1932-6203',
484 => 'https://www.worldcat.org/issn/0960-9822',
485 => 'https://www.worldcat.org/issn/1432-234X',
486 => 'https://www.worldcat.org/issn/0021-8782',
487 => 'https://www.worldcat.org/issn/0022-2372',
488 => 'https://www.worldcat.org/issn/0027-8424',
489 => 'https://www.worldcat.org/issn/1476-4687',
490 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241488',
491 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096270',
492 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611652',
493 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243735',
494 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782153',
495 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33452',
496 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976393',
497 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544561',
498 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904216',
499 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1973956',
500 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180116',
501 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438481',
502 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458926',
503 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643944',
504 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385481',
505 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618737',
506 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131348',
507 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378342',
508 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919403',
509 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726860',
510 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949388',
511 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288691',
512 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414586',
513 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079220',
514 => 'https://pubmed.ncbi.nlm.nih.gov/34186001',
515 => 'https://pubmed.ncbi.nlm.nih.gov/18270539',
516 => 'https://pubmed.ncbi.nlm.nih.gov/37043445',
517 => 'https://pubmed.ncbi.nlm.nih.gov/26417094',
518 => 'https://pubmed.ncbi.nlm.nih.gov/15930153',
519 => 'https://pubmed.ncbi.nlm.nih.gov/9847413',
520 => 'https://pubmed.ncbi.nlm.nih.gov/21900649',
521 => 'https://pubmed.ncbi.nlm.nih.gov/24184098',
522 => 'https://pubmed.ncbi.nlm.nih.gov/23258410',
523 => 'https://pubmed.ncbi.nlm.nih.gov/31104934',
524 => 'https://pubmed.ncbi.nlm.nih.gov/25987528',
525 => 'https://pubmed.ncbi.nlm.nih.gov/22183917',
526 => 'https://pubmed.ncbi.nlm.nih.gov/15681385',
527 => 'https://pubmed.ncbi.nlm.nih.gov/18605533',
528 => 'https://pubmed.ncbi.nlm.nih.gov/10646602',
529 => 'https://pubmed.ncbi.nlm.nih.gov/11353869',
530 => 'https://pubmed.ncbi.nlm.nih.gov/17878935',
531 => 'https://pubmed.ncbi.nlm.nih.gov/18776049',
532 => 'https://pubmed.ncbi.nlm.nih.gov/28812602',
533 => 'https://pubmed.ncbi.nlm.nih.gov/27291671',
534 => 'https://pubmed.ncbi.nlm.nih.gov/15557022',
535 => 'https://pubmed.ncbi.nlm.nih.gov/17767190',
536 => 'https://pubmed.ncbi.nlm.nih.gov/28018618',
537 => 'https://pubmed.ncbi.nlm.nih.gov/30921346',
538 => 'https://pubmed.ncbi.nlm.nih.gov/16618938',
539 => 'https://pubmed.ncbi.nlm.nih.gov/7964391',
540 => 'https://pubmed.ncbi.nlm.nih.gov/25937277',
541 => 'https://pubmed.ncbi.nlm.nih.gov/22496186',
542 => 'https://pubmed.ncbi.nlm.nih.gov/17106509',
543 => 'https://pubmed.ncbi.nlm.nih.gov/21690408',
544 => 'https://pubmed.ncbi.nlm.nih.gov/16621953',
545 => 'https://pubmed.ncbi.nlm.nih.gov/22513742',
546 => 'https://pubmed.ncbi.nlm.nih.gov/17251105',
547 => 'https://pubmed.ncbi.nlm.nih.gov/22875762',
548 => 'https://pubmed.ncbi.nlm.nih.gov/19608920',
549 => 'https://pubmed.ncbi.nlm.nih.gov/15772807',
550 => 'https://pubmed.ncbi.nlm.nih.gov/19282498',
551 => 'https://pubmed.ncbi.nlm.nih.gov/20957230',
552 => 'https://pubmed.ncbi.nlm.nih.gov/14660703',
553 => 'https://pubmed.ncbi.nlm.nih.gov/17848365',
554 => 'https://pubmed.ncbi.nlm.nih.gov/25922944',
555 => 'https://pubmed.ncbi.nlm.nih.gov/19756460',
556 => 'https://pubmed.ncbi.nlm.nih.gov/28349087',
557 => 'https://hdl.handle.net/2027.42%2F62816',
558 => 'http://www.sci-news.com/paleontology/science-original-color-extinct-bats-03283.html',
559 => 'http://www.ucmp.berkeley.edu/mammal/eutheria/chirosy.html',
560 => 'https://www.researchgate.net/publication/51902205',
561 => 'https://www.researchgate.net/publication/226036305',
562 => 'https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig%20related&pg=PA217',
563 => 'https://books.google.com/books?id=xf2QW_TS6asC&pg=PA206',
564 => 'https://books.google.com/books?id=gI-Sly7oq7QC&pg=PA288',
565 => 'https://books.google.com/books?id=eiftDAAAQBAJ&pg=PA113',
566 => 'https://books.google.com/books?id=T-3jBwAAQBAJ',
567 => 'https://web.archive.org/web/20210609004340/https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig+related&pg=PA217',
568 => 'https://web.archive.org/web/20170526143337/https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ',
569 => 'https://web.archive.org/web/20080722140449/http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf',
570 => 'https://web.archive.org/web/20150831022930/http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/',
571 => 'https://web.archive.org/web/20200325122845/http://www.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf',
572 => 'http://news.bbc.co.uk/2/hi/science/nature/7243502.stm',
573 => 'https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ',
574 => 'https://archive.org/details/creativeconserva00magi',
575 => 'https://archive.org/details/creativeconserva00magi/page/n378',
576 => 'https://archive.org/details/batmantropicscha00flem',
577 => 'https://archive.org/details/batmantropicscha00flem/page/n189',
578 => 'https://www.jstor.org/stable/3503895',
579 => 'https://www.jstor.org/stable/1381085',
580 => 'https://www.jstor.org/stable/108539',
581 => 'https://www.sciencedaily.com/releases/2007/01/070118161402.htm',
582 => 'http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf',
583 => 'https://www.nature.com/articles/news.2011.376',
584 => 'http://eprints.qut.edu.au/79775/1/79775.pdf',
585 => 'http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/',
586 => 'http://apps.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf',
587 => 'https://tree.opentreeoflife.org/taxonomy/browse?id=574724',
588 => 'https://paleobiodb.org/classic/basicTaxonInfo?taxon_no=40622',
589 => 'https://doi.org/10.1371%2Fjournal.pone.0166024',
590 => 'https://doi.org/10.11609%2Fjott.5893.12.8.15945-15946',
591 => 'https://pubmed.ncbi.nlm.nih.gov/27824953'
] |
All external links in the new text (all_links ) | [] |
Links in the page, before the edit (old_links ) | [
0 => 'http://www.edgeofexistence.org/mammals/species_info.php?id=49',
1 => 'http://www.bats.org.uk/pages/bats_of_the_world.html',
2 => 'https://web.archive.org/web/20110105143810/http://www.bats.org.uk/pages/bats_of_the_world.html',
3 => 'http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html',
4 => 'https://web.archive.org/web/20070606114143/http://news.nationalgeographic.com/news/2006/12/061206-tongue-photo.html',
5 => 'http://jeb.biologists.org/content/203/20/3045',
6 => 'http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html',
7 => 'http://www.si.edu/Encyclopedia_SI/nmnh/batfacts.htm',
8 => 'http://www.life.umd.edu/faculty/wilkinson/Wilk_South02.pdf',
9 => 'http://www.sciam.com/article.cfm?id=going-to-bat',
10 => 'http://www.livescience.com/26898-bats-host-human-infecting-viruses.html',
11 => 'http://www.iflscience.com/plants-and-animals/why-do-bats-transmit-so-many-diseases/',
12 => 'https://books.google.com/books?id=Li6_BAAAQBAJ',
13 => 'https://books.google.com/books?id=lN0pCwAAQBAJ',
14 => 'http://news.bbc.co.uk/1/hi/world/africa/1446733.stm',
15 => 'http://www.aztec-history.net/aztec_symbols',
16 => 'http://www.oaxacanwoodcarving.com/mythnatr.html',
17 => 'http://www.batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757',
18 => 'http://www.netstate.com/states/tables/state_bats.htm',
19 => 'http://www.bats.org.uk/pages/about_bats.html',
20 => 'http://tolweb.org/tree?group=Chiroptera&contgroup=Eutheria',
21 => 'http://www.fladdermus.net/thesis.htm',
22 => 'http://www.hscott.net/the-dsp-behind-bat-echolocation/',
23 => 'https://www.cdc.gov/features/bats/',
24 => 'http://www.cervantesvirtual.com/FichaObra.html?Ref=23879&portal=33',
25 => 'http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf',
26 => 'https://books.google.com/books?id=KG86AgWwFEUC&pg=PA136',
27 => 'http://www.psu.edu/dept/nkbiology/naturetrail/speciespages/little_brown_bat.html',
28 => 'https://www.nybg.org/botany/tlobova/mori/batsplants/batdispersal/batdispersal_frameset.htm',
29 => 'https://www.livescience.com/33258-bats-hate-rain.html',
30 => 'http://www.life.umd.edu/faculty/wilkinson/Wilk_AB86.pdf',
31 => 'http://www.life.umd.edu/faculty/wilkinson/Wilk_BES85b.pdf',
32 => 'https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf',
33 => 'https://www.kirkusreviews.com/book-reviews/kenneth-oppel/silverwing/',
34 => 'http://www.kennethoppel.ca/silverwing/shade.shtml',
35 => 'https://books.google.com/books?id=gI-Sly7oq7QC&pg=PA43',
36 => 'http://www.fox7austin.com/news/local-news/165481229-story',
37 => 'https://web.archive.org/web/20130623184422/http://batcon.org/',
38 => 'http://www.batcon.org/',
39 => 'https://www.flmnh.ufl.edu/index.php/bats/home/',
40 => 'https://web.archive.org/web/20120512092008/http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf',
41 => 'http://www.eurobats.org/documents/pdf/AC9/Doc_AC9_15_Protecting_underground_sites.pdf',
42 => 'http://news.bbc.co.uk/1/hi/england/4885642.stm',
43 => 'http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/7330846.stm',
44 => 'http://news.bbc.co.uk/2/hi/uk_news/england/cornwall/8320610.stm',
45 => 'https://books.google.com/books?id=DJDKaxEEfYgC&pg=PA51',
46 => 'http://www.wind-watch.org/news/2008/09/23/bc-study-to-help-bats-survive-wind-farms/',
47 => 'https://www.newscientist.com/article/dn11834',
48 => 'http://vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf',
49 => 'https://web.archive.org/web/20060523210423/http://www.vawind.org/Assets/Docs/BCI_ridgetop_advisory.pdf',
50 => 'https://web.archive.org/web/20060210183113/http://batcon.org/wind/BWEC2004finalreport.pdf',
51 => 'http://batcon.org/wind/BWEC2004finalreport.pdf',
52 => 'https://purl.fdlp.gov/GPO/gpo36973',
53 => 'https://books.google.com/books?id=nA0TDAAAQBAJ&pg=PA14',
54 => 'https://viterbi.usc.edu/news/news/2008/leading-edge-vortex.htm',
55 => 'http://jeb.biologists.org/content/jexbio/57/2/317.full.pdf',
56 => 'https://scitechdaily.com/kittis-hog-nosed-bat-is-worlds-smallest-mammal/',
57 => 'http://www.batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf',
58 => 'http://www.bats.org.uk/pages/bats_and_the_law.html',
59 => 'http://www.batcon.org/about-us/about-bci/mission-vision',
60 => 'http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf',
61 => 'http://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/',
62 => 'http://philadelphia.cbslocal.com/2013/11/14/pennsylvanias-bats-nearly-wiped-out/',
63 => 'http://o.canada.com/technology/white-nose-syndrome-killing-canadas-bats',
64 => 'https://www.whitenosesyndrome.org/sites/default/files/files/wns_illinois_detection_final_upload.pdf',
65 => 'https://tpwd.texas.gov/newsmedia/releases/?req=20170323c',
66 => 'https://web.archive.org/web/20170910130155/http://ifc.dpz.es/recursos/publicaciones/25/75/_ebook.pdf',
67 => 'http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf',
68 => 'http://www.ucs.mun.ca/~emiller/bats_vamp_drac.html',
69 => 'http://www.uwyo.edu/cmdelrio/site/publications_files/bats,%20isotopes,%20and%20kidneys.pdf',
70 => 'http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf',
71 => 'http://www.thefreelibrary.com/Canada+:+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192',
72 => 'https://web.archive.org/web/20131110172458/http://www.oaxacanwoodcarving.com/mythnatr.html',
73 => 'http://www.cwhc-rcsf.ca/wns.php',
74 => 'https://d-nb.info/gnd/4154574-6',
75 => 'https://id.ndl.go.jp/auth/ndlna/00566532',
76 => 'https://gd.eppo.int/taxon/1CHIRO',
77 => 'http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:faunaeur.org:taxname:12623',
78 => 'https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9397',
79 => 'https://www.gbif.org/species/734',
80 => 'https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=179985',
81 => 'https://www.nsf.gov/news/news_summ.jsp?cntn_id=124679',
82 => 'http://www.bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf',
83 => 'https://data.nbn.org.uk/Taxa/NHMSYS0000376160',
84 => 'https://web.archive.org/web/20170926043235/http://www.kennethoppel.ca/silverwing/shade.shtml',
85 => 'https://animaldiversity.org/accounts/Chiroptera/',
86 => 'https://fauna-eu.org/cdm_dataportal/taxon/e20b0e88-8a89-45f4-bd6d-b81287fad0ac',
87 => 'https://purl.fdlp.gov/GPO/gpo117356',
88 => 'https://jeb.biologists.org/content/56/1/37',
89 => 'https://ui.adsabs.harvard.edu/abs/2013PLoSO...872770S',
90 => 'https://ui.adsabs.harvard.edu/abs/2008PLoSO...3.2036S',
91 => 'https://ui.adsabs.harvard.edu/abs/2004ASAJ..116.3701M',
92 => 'https://ui.adsabs.harvard.edu/abs/2009ASAJ..125.3454K',
93 => 'https://ui.adsabs.harvard.edu/abs/2009PLoSO...4.6390M',
94 => 'https://ui.adsabs.harvard.edu/abs/2010PLoSO...5.8838S',
95 => 'https://ui.adsabs.harvard.edu/abs/2014PLoSO...9k5724M',
96 => 'https://ui.adsabs.harvard.edu/abs/2013PLoSO...877183G',
97 => 'https://ui.adsabs.harvard.edu/abs/2011PLoSO...627114C',
98 => 'https://ui.adsabs.harvard.edu/abs/2007PLoSO...2..205P',
99 => 'https://ui.adsabs.harvard.edu/abs/1990SciAm.262b..76W',
100 => 'https://ui.adsabs.harvard.edu/abs/2011Natur.480..376L',
101 => 'https://ui.adsabs.harvard.edu/abs/2010Sci...329..679F',
102 => 'https://ui.adsabs.harvard.edu/abs/2005Natur.438..575L',
103 => 'https://ui.adsabs.harvard.edu/abs/2005Sci...310..676L',
104 => 'https://ui.adsabs.harvard.edu/abs/2009PLoSO...4.6746B',
105 => 'https://ui.adsabs.harvard.edu/abs/2016NatSR...639419P',
106 => 'https://ui.adsabs.harvard.edu/abs/2011Sci...332...41B',
107 => 'https://archive.org/details/walkersmammalsof01nowa/page/1629',
108 => 'https://archive.org/details/dictionaryofsymb0000vrie/page/36',
109 => 'https://www.britishmuseum.org/pdf/Chinese_symbols_1109.pdf',
110 => 'https://archive.org/details/missouricavesinh00weav',
111 => 'https://archive.org/details/missouricavesinh00weav/page/64',
112 => 'https://www.marinespecies.org/aphia.php?p=taxdetails&id=1037271',
113 => 'https://archive.org/details/mesoamericanmyth0000read/page/132',
114 => 'https://www.zoosprint.zooreach.org/index.php/zp/article/view/5669/5086',
115 => 'https://www.cdc.gov/vhf/ebola/about.html',
116 => 'https://api.semanticscholar.org/CorpusID:43601856',
117 => 'https://api.semanticscholar.org/CorpusID:2971923',
118 => 'https://books.google.com/books?id=f1aNgZwGsYoC',
119 => 'https://web.archive.org/web/20171215000829/http://www.nsrl.ttu.edu/about/Outreach/Exhibits/Vampire%20Bat%20exhibit.pdf',
120 => 'https://web.archive.org/web/20190930212052/https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/',
121 => 'https://web.archive.org/web/20161019073438/http://www.fox7austin.com/news/local-news/165481229-story',
122 => 'https://www.iucnredlist.org/search/stats',
123 => 'https://api.semanticscholar.org/CorpusID:25361258',
124 => 'https://api.semanticscholar.org/CorpusID:23782948',
125 => 'https://api.semanticscholar.org/CorpusID:4381156',
126 => 'https://api.semanticscholar.org/CorpusID:82956979',
127 => 'https://api.semanticscholar.org/CorpusID:4403209',
128 => 'https://api.semanticscholar.org/CorpusID:84007133',
129 => 'https://zenodo.org/record/3949088',
130 => 'https://api.semanticscholar.org/CorpusID:11214563',
131 => 'https://api.semanticscholar.org/CorpusID:27019675',
132 => 'https://api.semanticscholar.org/CorpusID:17019562',
133 => 'https://api.semanticscholar.org/CorpusID:34572622',
134 => 'https://www.wikidata.org/wiki/Q28425#identifiers',
135 => 'https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo',
136 => 'https://www.worldatlas.com/articles/bat-species.html',
137 => 'https://www.theguardian.com/news/2018/jun/12/the-last-bat-the-mystery-of-britains-most-solitary-animal',
138 => 'https://api.semanticscholar.org/CorpusID:90531252',
139 => 'https://api.semanticscholar.org/CorpusID:32118961',
140 => 'https://books.google.com/books?id=Gtp4yWnPD9YC&q=Biology+Bats',
141 => 'https://books.google.com/books?id=cueMBgAAQBAJ&q=bat+breeding+seasons&pg=PT100',
142 => 'https://api.semanticscholar.org/CorpusID:855367',
143 => 'https://academic.oup.com/jue/article/5/1/juz015/5572591',
144 => 'http://www.boldsystems.org/index.php/TaxBrowser_TaxonPage?taxid=329',
145 => 'https://web.archive.org/web/20121020143210/http://batcon.org/pdfs/sws/AgencyGuideCaveMineGating2009.pdf',
146 => 'https://web.archive.org/web/20140812231111/http://batcon.org/index.php/media-and-info/bats-archives.html?task=viewArticle&magArticleID=757',
147 => 'https://eol.org/pages/7631',
148 => 'https://www.worldhistory.org/Zapotec_Civilization/',
149 => 'https://web.archive.org/web/20180310034326/http://bats.org.au/uploads/members/Care-and-Rehabiliation-of-Microbats-V3-Mar14.pdf',
150 => 'https://catalogue.bnf.fr/ark:/12148/cb137569195',
151 => 'https://data.bnf.fr/ark:/12148/cb137569195',
152 => 'https://ui.adsabs.harvard.edu/abs/2002PNAS...99.1431T',
153 => 'https://biodiversity.org.au/afd/taxa/Chiroptera',
154 => 'https://web.archive.org/web/20201001170139/https://www.youtube.com/watch?time_continue=235&v=wi30w-Mk2yQ&feature=emb_logo',
155 => 'https://web.archive.org/web/20160819233333/http://www.edgeofexistence.org/mammals/species_info.php?id=49',
156 => 'https://ui.adsabs.harvard.edu/abs/1992Sci...256...86B',
157 => 'https://digitalcommons.usf.edu/kip_articles/143',
158 => 'https://www.irmng.org/aphia.php?p=taxdetails&id=11220',
159 => 'https://api.semanticscholar.org/CorpusID:247675112',
160 => 'https://api.semanticscholar.org/CorpusID:86327074',
161 => 'https://www.departments.bucknell.edu/biology/resources/msw3/browse.asp?s=y&id=13800001',
162 => 'https://www.nzor.org.nz/names/13d7c9ab-d55f-43cb-b2c1-b914a12c6c67',
163 => 'https://treatment.plazi.org/id/C11B87BD-FF82-BF1B-9994-FB30FA317197',
164 => 'https://api.semanticscholar.org/CorpusID:198969258',
165 => 'https://api.semanticscholar.org/CorpusID:198968973',
166 => 'https://web.archive.org/web/20101220083516/http://netstate.com/states/tables/state_bats.htm',
167 => 'https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph115133&CON_LNG=ENG',
168 => 'https://api.semanticscholar.org/CorpusID:12460893',
169 => 'https://www.catalogueoflife.org/data/taxon/XC',
170 => 'https://web.archive.org/web/20200129210527/http://www.fladdermus.net/thesis.htm',
171 => 'https://ui.adsabs.harvard.edu/abs/2020PNAS..117.9423M',
172 => 'https://doi.org/10.1126%2Fscience.1301735',
173 => 'https://pubmed.ncbi.nlm.nih.gov/1301735',
174 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038382',
175 => 'https://doi.org/10.1371%2Fcurrents.RRN1212',
176 => 'https://pubmed.ncbi.nlm.nih.gov/21327164',
177 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375846',
178 => 'https://doi.org/10.1111%2Fj.1469-7580.2007.00817.x',
179 => 'https://pubmed.ncbi.nlm.nih.gov/17971117',
180 => 'https://doi.org/10.1242%2Fjeb.203.20.3045',
181 => 'https://pubmed.ncbi.nlm.nih.gov/11003817',
182 => 'https://doi.org/10.1242%2Fjeb.56.1.37',
183 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936036',
184 => 'https://doi.org/10.1098%2Frspb.2016.0636',
185 => 'https://pubmed.ncbi.nlm.nih.gov/27335420',
186 => 'https://doi.org/10.1016%2F0034-5687(81)90009-8',
187 => 'https://pubmed.ncbi.nlm.nih.gov/7330485',
188 => 'https://www.worldcat.org/oclc/857980151',
189 => 'https://doi.org/10.1017%2Fs0016672309000032',
190 => 'https://pubmed.ncbi.nlm.nih.gov/19393126',
191 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235709',
192 => 'https://pubmed.ncbi.nlm.nih.gov/649500',
193 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760910',
194 => 'https://doi.org/10.1371%2Fjournal.pone.0072770',
195 => 'https://pubmed.ncbi.nlm.nih.gov/24019876',
196 => 'https://doi.org/10.1078%2F0944-2006-00007',
197 => 'https://pubmed.ncbi.nlm.nih.gov/16351819',
198 => 'https://doi.org/10.1093%2Ficb%2F13.4.1215',
199 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323577',
200 => 'https://doi.org/10.1371%2Fjournal.pone.0002036',
201 => 'https://pubmed.ncbi.nlm.nih.gov/18446226',
202 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122208',
203 => 'https://doi.org/10.1073%2Fpnas.022477199',
204 => 'https://pubmed.ncbi.nlm.nih.gov/11805285',
205 => 'https://doi.org/10.1121%2F1.1815133',
206 => 'https://pubmed.ncbi.nlm.nih.gov/15658720',
207 => 'https://doi.org/10.2307%2F3546476',
208 => 'https://www.jstor.org/stable/3546476',
209 => 'https://doi.org/10.1121%2F1.3097500',
210 => 'https://pubmed.ncbi.nlm.nih.gov/19425684',
211 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712075',
212 => 'https://doi.org/10.1371%2Fjournal.pone.0006390',
213 => 'https://pubmed.ncbi.nlm.nih.gov/19636375',
214 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809114',
215 => 'https://doi.org/10.1371%2Fjournal.pone.0008838',
216 => 'https://pubmed.ncbi.nlm.nih.gov/20098620',
217 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486538',
218 => 'https://doi.org/10.1007%2Fs00360-017-1100-y',
219 => 'https://pubmed.ncbi.nlm.nih.gov/28432393',
220 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119008',
221 => 'https://doi.org/10.1098%2Frspb.2010.2290',
222 => 'https://pubmed.ncbi.nlm.nih.gov/21208959',
223 => 'https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.581.38',
224 => 'https://doi.org/10.1016%2FS0306-4565(98)00033-3',
225 => 'https://doi.org/10.1016%2F0010-406X(67)90601-9',
226 => 'https://doi.org/10.1093%2Ficb%2Ficr042',
227 => 'https://pubmed.ncbi.nlm.nih.gov/21700575',
228 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281203',
229 => 'https://doi.org/10.1371%2Fjournal.pone.0115724',
230 => 'https://pubmed.ncbi.nlm.nih.gov/25551615',
231 => 'https://doi.org/10.1139%2Fz94-100',
232 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795000',
233 => 'https://doi.org/10.1371%2Fjournal.pone.0077183',
234 => 'https://pubmed.ncbi.nlm.nih.gov/24130851',
235 => 'https://doi.org/10.1644%2F05-MAMM-A-424R2.1',
236 => 'https://doi.org/10.1242%2Fjeb.57.2.317',
237 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1772916',
238 => 'https://doi.org/10.1136%2Fbjo.2005.077966',
239 => 'https://pubmed.ncbi.nlm.nih.gov/16267906',
240 => 'https://doi.org/10.1111%2Fj.1469-7998.1990.tb04296.x',
241 => 'https://doi.org/10.1034%2Fj.1600-0706.2000.880109.x',
242 => 'https://doi.org/10.1515%2Fmammalia-2017-0128',
243 => 'https://doi.org/10.1111%2Fj.1469-7998.1975.tb02248.x',
244 => 'https://www.jstor.org/stable/30055364',
245 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206078',
246 => 'https://doi.org/10.1371%2Fjournal.pone.0027114',
247 => 'https://pubmed.ncbi.nlm.nih.gov/22069493',
248 => 'https://doi.org/10.1016%2F0305-0491(80)90131-5',
249 => 'https://doi.org/10.1093%2Fmolbev%2Fmsq286',
250 => 'https://pubmed.ncbi.nlm.nih.gov/21037206',
251 => 'https://doi.org/10.1093%2Fjmammal%2Fgyy044',
252 => 'https://doi.org/10.1093%2Fjue%2Fjuz015',
253 => 'https://doi.org/10.1093%2Ficb%2Ficn033',
254 => 'https://pubmed.ncbi.nlm.nih.gov/21669777',
255 => 'https://doi.org/10.1146%2Fannurev.ento.34.1.17',
256 => 'https://doi.org/10.1016%2Fj.physbeh.2016.08.016',
257 => 'https://pubmed.ncbi.nlm.nih.gov/27542518',
258 => 'https://doi.org/10.1644%2F1545-1410(2001)662%3C0001:aj%3E2.0.co;2',
259 => 'https://doi.org/10.2307%2F1383205',
260 => 'https://www.jstor.org/stable/1383205',
261 => 'https://doi.org/10.1111%2Fj.1744-7429.2001.tb00206.x',
262 => 'https://doi.org/10.1111%2Fj.1744-7429.2003.tb00606.x',
263 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1784064',
264 => 'https://doi.org/10.1371%2Fjournal.pone.0000205',
265 => 'https://pubmed.ncbi.nlm.nih.gov/17299585',
266 => 'https://doi.org/10.1644%2F1545-1410(2001)656%3C0001:TC%3E2.0.CO;2',
267 => 'https://doi.org/10.1007%2FBF00184422',
268 => 'https://doi.org/10.1038%2Fscientificamerican0290-76',
269 => 'https://doi.org/10.1111%2Fj.1095-8312.1995.tb01031.x',
270 => 'https://doi.org/10.1590%2FS0101-81752007000300036',
271 => 'https://doi.org/10.1111%2Fbrv.12021',
272 => 'https://pubmed.ncbi.nlm.nih.gov/23347323',
273 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673352',
274 => 'https://doi.org/10.1051%2Fparasite%2F2020051',
275 => 'https://www.worldcat.org/issn/1776-1042',
276 => 'https://pubmed.ncbi.nlm.nih.gov/33206593',
277 => 'https://doi.org/10.1038%2Fnature10590',
278 => 'https://pubmed.ncbi.nlm.nih.gov/22031324',
279 => 'https://doi.org/10.1126%2Fscience.1188594',
280 => 'https://pubmed.ncbi.nlm.nih.gov/20689016',
281 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169091',
282 => 'https://doi.org/10.1002%2Frmv.520',
283 => 'https://pubmed.ncbi.nlm.nih.gov/17042030',
284 => 'https://doi.org/10.20506%2Frst.19.1.1221',
285 => 'https://pubmed.ncbi.nlm.nih.gov/11189715',
286 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539106',
287 => 'https://doi.org/10.1128%2FCMR.00017-06',
288 => 'https://pubmed.ncbi.nlm.nih.gov/16847084',
289 => 'https://doi.org/10.1007%2F978-94-007-4899-6_12',
290 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097447',
291 => 'https://doi.org/10.1038%2Fnrmicro1323',
292 => 'https://pubmed.ncbi.nlm.nih.gov/16357858',
293 => 'https://doi.org/10.1099%2F0022-1317-81-8-1927',
294 => 'https://pubmed.ncbi.nlm.nih.gov/10900029',
295 => 'https://doi.org/10.1038%2F438575a',
296 => 'https://pubmed.ncbi.nlm.nih.gov/16319873',
297 => 'https://doi.org/10.1016%2Fj.aogh.2015.02.005',
298 => 'https://pubmed.ncbi.nlm.nih.gov/25960093',
299 => 'https://doi.org/10.1002%2F9781118818824.ch11',
300 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196766',
301 => 'https://doi.org/10.1073%2Fpnas.1919176117',
302 => 'https://pubmed.ncbi.nlm.nih.gov/32284401',
303 => 'https://doi.org/10.1126%2Fscience.1120872',
304 => 'https://pubmed.ncbi.nlm.nih.gov/16254175',
305 => 'https://doi.org/10.1126%2Fscience.1118391',
306 => 'https://pubmed.ncbi.nlm.nih.gov/16195424',
307 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708621',
308 => 'https://doi.org/10.1371%2Fjournal.ppat.1006698',
309 => 'https://pubmed.ncbi.nlm.nih.gov/29190287',
310 => 'https://www.worldcat.org/issn/0261-3077',
311 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145188',
312 => 'https://doi.org/10.1098%2Frspb.2010.2718',
313 => 'https://pubmed.ncbi.nlm.nih.gov/21307051',
314 => 'https://doi.org/10.1111%2Fbij.12381',
315 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913674',
316 => 'https://doi.org/10.4161%2Fcib.25783',
317 => 'https://pubmed.ncbi.nlm.nih.gov/24505498',
318 => 'https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.539.5104',
319 => 'https://doi.org/10.1016%2Fs0003-3472(86)80274-3',
320 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727915',
321 => 'https://doi.org/10.1371%2Fjournal.pone.0006746',
322 => 'https://pubmed.ncbi.nlm.nih.gov/19707550',
323 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1688873',
324 => 'https://doi.org/10.1098%2Frspb.1998.0286',
325 => 'https://pubmed.ncbi.nlm.nih.gov/9493408',
326 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5178335',
327 => 'https://doi.org/10.1038%2Fsrep39419',
328 => 'https://pubmed.ncbi.nlm.nih.gov/28005079',
329 => 'https://doi.org/10.1007%2FBF00299244',
330 => 'https://doi.org/10.1007%2Fbf00292559',
331 => 'https://www.jstor.org/stable/4599268',
332 => 'https://doi.org/10.1644%2FBME-004',
333 => 'https://doi.org/10.1111%2Fjzo.12069',
334 => 'https://doi.org/10.1111%2Fj.1439-0310.1977.tb02120.x',
335 => 'https://doi.org/10.2307%2F1295789',
336 => 'https://www.jstor.org/stable/1295789',
337 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177628',
338 => 'https://doi.org/10.1098%2Frspb.2011.0190',
339 => 'https://pubmed.ncbi.nlm.nih.gov/21450735',
340 => 'https://doi.org/10.1046%2Fj.1474-9728.2002.00020.x',
341 => 'https://pubmed.ncbi.nlm.nih.gov/12882342',
342 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714502',
343 => 'https://doi.org/10.1186%2Fs12898-016-0056-1',
344 => 'https://pubmed.ncbi.nlm.nih.gov/26767616',
345 => 'https://doi.org/10.1016%2Fj.cub.2008.06.029',
346 => 'https://pubmed.ncbi.nlm.nih.gov/18727900',
347 => 'https://www.worldcat.org/oclc/252616082',
348 => 'https://doi.org/10.1126%2Fscience.1201366',
349 => 'https://pubmed.ncbi.nlm.nih.gov/21454775',
350 => 'https://web.archive.org/web/20190328065456/https://www.thefreelibrary.com/Canada+:+Environment+Canada+Announces+Funding+to+Fight+Threat+of...-a0325180192',
351 => 'https://web.archive.org/web/20171117002846/http://extwprlegs1.fao.org/docs/pdf/mal95115.pdf',
352 => 'https://web.archive.org/web/20161227063809/https://www.dmme.virginia.gov/commercedocs/VAMIN_VOL47_NO04.pdf',
353 => 'https://id.loc.gov/authorities/sh85012393',
354 => 'https://zenodo.org/record/8204807',
355 => 'https://zenodo.org/record/8204647',
356 => 'https://doi.org/10.1177%2F0300985812436745',
357 => 'https://pubmed.ncbi.nlm.nih.gov/22291071',
358 => 'https://api.semanticscholar.org/CorpusID:11189743',
359 => 'https://inaturalist.org/taxa/40268',
360 => 'https://web.archive.org/web/20071230022439/http://ngm.nationalgeographic.com/ngm/0204/feature7/online_extra.html',
361 => 'http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007282580905171',
362 => 'https://ui.adsabs.harvard.edu/abs/1998Oikos..81..143P',
363 => 'https://ui.adsabs.harvard.edu/abs/2000Oikos..88...75S',
364 => 'https://ui.adsabs.harvard.edu/abs/2001Biotr..33..520H',
365 => 'https://ui.adsabs.harvard.edu/abs/2003Biotr..35..491H',
366 => 'https://ui.adsabs.harvard.edu/abs/2016BMCE...16....2G',
367 => 'https://web.archive.org/web/20200921025300/http://www.stoppinginvasives.com/dotAsset/39c01b98-9a18-4715-bd36-adefe87d7c56.pdf',
368 => 'https://web.archive.org/web/20200216145004/http://www.cwhc-rcsf.ca/wns.php',
369 => 'https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Chiroptera',
370 => 'http://www.dictionary.com/browse/bat?s=ts',
371 => 'http://www.etymonline.com/index.php?term=bat',
372 => 'https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry%3Dxei/r',
373 => 'https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry%3Dptero/n',
374 => 'https://doi.org/10.1007%2Fs10914-009-9118-x',
375 => 'https://doi.org/10.1671%2F039.029.0204',
376 => 'https://doi.org/10.1098%2Frsbl.2021.0185',
377 => 'https://doi.org/10.1038%2Fnature06549',
378 => 'https://doi.org/10.1371%2Fjournal.pone.0283505',
379 => 'https://doi.org/10.1073%2Fpnas.1509831112',
380 => 'https://doi.org/10.1644%2F1545-1542(2004)085%3C0321:Prarcf%3E2.0.Co;2',
381 => 'https://doi.org/10.1093%2Fmolbev%2Fmsi180',
382 => 'https://doi.org/10.1007%2FPL00006430',
383 => 'https://doi.org/10.1093%2Fsysbio%2Fsyr089',
384 => 'https://doi.org/10.1016%2Fj.cub.2013.09.014',
385 => 'https://doi.org/10.1126%2Fscience.1230835',
386 => 'https://doi.org/10.1016%2Fj.cub.2019.04.048',
387 => 'https://doi.org/10.1101%2F014308',
388 => 'https://doi.org/10.1016%2Fj.ympev.2015.04.027',
389 => 'https://doi.org/10.1007%2Fs11230-011-9339-2',
390 => 'https://doi.org/10.1126%2Fscience.1105113',
391 => 'https://doi.org/10.1086%2F587825',
392 => 'https://doi.org/10.1038%2Fnature.2011.9304',
393 => 'https://doi.org/10.1038%2F35003188',
394 => 'https://doi.org/10.1073%2Fpnas.111551998',
395 => 'https://doi.org/10.1371%2Fjournal.pone.0000900',
396 => 'https://doi.org/10.1073%2Fpnas.0802097105',
397 => 'https://doi.org/10.1038%2Fs41559-016-0021',
398 => 'https://doi.org/10.1038%2Fsrep27726',
399 => 'https://doi.org/10.1023%2FB:JOMM.0000047340.25620.89',
400 => 'https://doi.org/10.1242%2Fjeb.01288',
401 => 'https://doi.org/10.1016%2FS0169-5347(01)02246-7',
402 => 'https://doi.org/10.2307%2F3503895',
403 => 'https://doi.org/10.1111%2F1365-2435.12447',
404 => 'https://doi.org/10.1038%2Fsj.embor.7401050',
405 => 'https://doi.org/10.1098%2Frsos.160398',
406 => 'https://doi.org/10.1007/BF00418147',
407 => 'https://doi.org/10.1007%2FBF00418147',
408 => 'https://doi.org/10.1371%2Fjournal.pone.0213781',
409 => 'https://doi.org/10.1073%2Fpnas.0509716103',
410 => 'https://doi.org/10.1242%2Fjeb.190.1.195',
411 => 'https://doi.org/10.1016%2Fj.celrep.2015.04.001',
412 => 'https://doi.org/10.1098%2Frspb.2012.0346',
413 => 'https://doi.org/10.1080%2F08998280.2006.11928217',
414 => 'https://doi.org/10.1073%2Fpnas.1018740108',
415 => 'https://doi.org/10.1093%2Fjmammal%2Fgyy050',
416 => 'https://doi.org/10.1038%2Fnews.2011.376',
417 => 'https://doi.org/10.2307%2F1381085',
418 => 'https://doi.org/10.1242%2Fjeb.02186',
419 => 'https://doi.org/10.1098%2Frstl.1852.0011',
420 => 'https://doi.org/10.1152%2Fajpregu.00635.2011',
421 => 'https://doi.org/10.1098%2FRspb.2006.0200',
422 => 'https://doi.org/10.1242%2Fjeb.073171',
423 => 'https://doi.org/10.1126%2Fscience.1174096',
424 => 'https://doi.org/10.1007%2Fs00114-005-0611-7',
425 => 'https://doi.org/10.1242%2Fjeb.024620',
426 => 'https://doi.org/10.1007%2F978-3-642-40462-7_2',
427 => 'https://doi.org/10.1371%2Fjournal.pone.0013144',
428 => 'https://doi.org/10.1093%2Fmolbev%2Fmsh015',
429 => 'https://doi.org/10.1098%2Frspb.2007.0904',
430 => 'https://doi.org/10.1371%2Fjournal.pone.0123205',
431 => 'https://doi.org/10.1111%2Fjzo.12105',
432 => 'https://doi.org/10.1007%2Fs00114-009-0606-x',
433 => 'https://doi.org/10.1242%2Fjeb.074823',
434 => 'https://doi.org/10.1080%2F23328940.2016.1214334',
435 => 'https://api.semanticscholar.org/CorpusID:5923450',
436 => 'https://api.semanticscholar.org/CorpusID:86384840',
437 => 'https://api.semanticscholar.org/CorpusID:4356708',
438 => 'https://api.semanticscholar.org/CorpusID:22900642',
439 => 'https://api.semanticscholar.org/CorpusID:31192292',
440 => 'https://api.semanticscholar.org/CorpusID:155105169',
441 => 'https://api.semanticscholar.org/CorpusID:13433327',
442 => 'https://api.semanticscholar.org/CorpusID:14469619',
443 => 'https://api.semanticscholar.org/CorpusID:25912333',
444 => 'https://api.semanticscholar.org/CorpusID:21638734',
445 => 'https://api.semanticscholar.org/CorpusID:84015350',
446 => 'https://api.semanticscholar.org/CorpusID:205004782',
447 => 'https://api.semanticscholar.org/CorpusID:29068452',
448 => 'https://api.semanticscholar.org/CorpusID:11528722',
449 => 'https://api.semanticscholar.org/CorpusID:2715542',
450 => 'https://api.semanticscholar.org/CorpusID:38538056',
451 => 'https://api.semanticscholar.org/CorpusID:18305396',
452 => 'https://api.semanticscholar.org/CorpusID:52937127',
453 => 'https://api.semanticscholar.org/CorpusID:405317',
454 => 'https://api.semanticscholar.org/CorpusID:206520028',
455 => 'https://api.semanticscholar.org/CorpusID:18306198',
456 => 'https://api.semanticscholar.org/CorpusID:9499097',
457 => 'https://www.tandfonline.com/doi/full/10.1671/039.029.0204',
458 => 'https://ui.adsabs.harvard.edu/abs/2009JVPal..29..627T',
459 => 'https://ui.adsabs.harvard.edu/abs/2008Natur.451..818S',
460 => 'https://ui.adsabs.harvard.edu/abs/2023PLoSO..1883505R',
461 => 'https://ui.adsabs.harvard.edu/abs/2015PNAS..11212592C',
462 => 'https://ui.adsabs.harvard.edu/abs/1998JMolE..47..709P',
463 => 'https://ui.adsabs.harvard.edu/abs/2013Sci...339..456Z',
464 => 'https://ui.adsabs.harvard.edu/abs/2005Sci...307..580T',
465 => 'https://ui.adsabs.harvard.edu/abs/2000Natur.403..188T',
466 => 'https://ui.adsabs.harvard.edu/abs/2001PNAS...98.6241S',
467 => 'https://ui.adsabs.harvard.edu/abs/2007PLoSO...2..900L',
468 => 'https://ui.adsabs.harvard.edu/abs/2008PNAS..10513959L',
469 => 'https://ui.adsabs.harvard.edu/abs/2017NatEE...1...21W',
470 => 'https://ui.adsabs.harvard.edu/abs/2016NatSR...627726L',
471 => 'https://ui.adsabs.harvard.edu/abs/2015FuEco..29.1411S',
472 => 'https://ui.adsabs.harvard.edu/abs/2016RSOS....360398M',
473 => 'https://ui.adsabs.harvard.edu/abs/2019PLoSO..1413781T',
474 => 'https://ui.adsabs.harvard.edu/abs/2006PNAS..103.6581S',
475 => 'https://ui.adsabs.harvard.edu/abs/2011PNAS..10811291S',
476 => 'https://ui.adsabs.harvard.edu/abs/2009Sci...325..325C',
477 => 'https://ui.adsabs.harvard.edu/abs/2005NW.....92..164H',
478 => 'https://ui.adsabs.harvard.edu/abs/2010PLoSO...513144T',
479 => 'https://ui.adsabs.harvard.edu/abs/2015PLoSO..1023205T',
480 => 'https://ui.adsabs.harvard.edu/abs/2010NW.....97...29S',
481 => 'https://www.worldcat.org/issn/0272-4634',
482 => 'https://www.worldcat.org/issn/1744-957X',
483 => 'https://www.worldcat.org/issn/1932-6203',
484 => 'https://www.worldcat.org/issn/0960-9822',
485 => 'https://www.worldcat.org/issn/1432-234X',
486 => 'https://www.worldcat.org/issn/0021-8782',
487 => 'https://www.worldcat.org/issn/0022-2372',
488 => 'https://www.worldcat.org/issn/0027-8424',
489 => 'https://www.worldcat.org/issn/1476-4687',
490 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241488',
491 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096270',
492 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611652',
493 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243735',
494 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782153',
495 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33452',
496 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976393',
497 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544561',
498 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904216',
499 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1973956',
500 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180116',
501 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438481',
502 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458926',
503 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643944',
504 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385481',
505 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618737',
506 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131348',
507 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378342',
508 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919403',
509 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726860',
510 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949388',
511 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288691',
512 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414586',
513 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079220',
514 => 'https://pubmed.ncbi.nlm.nih.gov/34186001',
515 => 'https://pubmed.ncbi.nlm.nih.gov/18270539',
516 => 'https://pubmed.ncbi.nlm.nih.gov/37043445',
517 => 'https://pubmed.ncbi.nlm.nih.gov/26417094',
518 => 'https://pubmed.ncbi.nlm.nih.gov/15930153',
519 => 'https://pubmed.ncbi.nlm.nih.gov/9847413',
520 => 'https://pubmed.ncbi.nlm.nih.gov/21900649',
521 => 'https://pubmed.ncbi.nlm.nih.gov/24184098',
522 => 'https://pubmed.ncbi.nlm.nih.gov/23258410',
523 => 'https://pubmed.ncbi.nlm.nih.gov/31104934',
524 => 'https://pubmed.ncbi.nlm.nih.gov/25987528',
525 => 'https://pubmed.ncbi.nlm.nih.gov/22183917',
526 => 'https://pubmed.ncbi.nlm.nih.gov/15681385',
527 => 'https://pubmed.ncbi.nlm.nih.gov/18605533',
528 => 'https://pubmed.ncbi.nlm.nih.gov/10646602',
529 => 'https://pubmed.ncbi.nlm.nih.gov/11353869',
530 => 'https://pubmed.ncbi.nlm.nih.gov/17878935',
531 => 'https://pubmed.ncbi.nlm.nih.gov/18776049',
532 => 'https://pubmed.ncbi.nlm.nih.gov/28812602',
533 => 'https://pubmed.ncbi.nlm.nih.gov/27291671',
534 => 'https://pubmed.ncbi.nlm.nih.gov/15557022',
535 => 'https://pubmed.ncbi.nlm.nih.gov/17767190',
536 => 'https://pubmed.ncbi.nlm.nih.gov/28018618',
537 => 'https://pubmed.ncbi.nlm.nih.gov/30921346',
538 => 'https://pubmed.ncbi.nlm.nih.gov/16618938',
539 => 'https://pubmed.ncbi.nlm.nih.gov/7964391',
540 => 'https://pubmed.ncbi.nlm.nih.gov/25937277',
541 => 'https://pubmed.ncbi.nlm.nih.gov/22496186',
542 => 'https://pubmed.ncbi.nlm.nih.gov/17106509',
543 => 'https://pubmed.ncbi.nlm.nih.gov/21690408',
544 => 'https://pubmed.ncbi.nlm.nih.gov/16621953',
545 => 'https://pubmed.ncbi.nlm.nih.gov/22513742',
546 => 'https://pubmed.ncbi.nlm.nih.gov/17251105',
547 => 'https://pubmed.ncbi.nlm.nih.gov/22875762',
548 => 'https://pubmed.ncbi.nlm.nih.gov/19608920',
549 => 'https://pubmed.ncbi.nlm.nih.gov/15772807',
550 => 'https://pubmed.ncbi.nlm.nih.gov/19282498',
551 => 'https://pubmed.ncbi.nlm.nih.gov/20957230',
552 => 'https://pubmed.ncbi.nlm.nih.gov/14660703',
553 => 'https://pubmed.ncbi.nlm.nih.gov/17848365',
554 => 'https://pubmed.ncbi.nlm.nih.gov/25922944',
555 => 'https://pubmed.ncbi.nlm.nih.gov/19756460',
556 => 'https://pubmed.ncbi.nlm.nih.gov/28349087',
557 => 'https://hdl.handle.net/2027.42%2F62816',
558 => 'http://www.sci-news.com/paleontology/science-original-color-extinct-bats-03283.html',
559 => 'http://www.ucmp.berkeley.edu/mammal/eutheria/chirosy.html',
560 => 'https://www.researchgate.net/publication/51902205',
561 => 'https://www.researchgate.net/publication/226036305',
562 => 'https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig%20related&pg=PA217',
563 => 'https://books.google.com/books?id=xf2QW_TS6asC&pg=PA206',
564 => 'https://books.google.com/books?id=gI-Sly7oq7QC&pg=PA288',
565 => 'https://books.google.com/books?id=eiftDAAAQBAJ&pg=PA113',
566 => 'https://books.google.com/books?id=T-3jBwAAQBAJ',
567 => 'https://web.archive.org/web/20210609004340/https://books.google.com/books?id=Ql6Jl6wKb88C&q=earwig+related&pg=PA217',
568 => 'https://web.archive.org/web/20170526143337/https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ',
569 => 'https://web.archive.org/web/20080722140449/http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf',
570 => 'https://web.archive.org/web/20150831022930/http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/',
571 => 'https://web.archive.org/web/20200325122845/http://www.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf',
572 => 'http://news.bbc.co.uk/2/hi/science/nature/7243502.stm',
573 => 'https://mammaldiversity.org/#Y2hpcm9wdGVyYSZnbG9iYWxfc2VhcmNoPXRydWUmbG9vc2U9dHJ1ZQ',
574 => 'https://archive.org/details/creativeconserva00magi',
575 => 'https://archive.org/details/creativeconserva00magi/page/n378',
576 => 'https://archive.org/details/batmantropicscha00flem',
577 => 'https://archive.org/details/batmantropicscha00flem/page/n189',
578 => 'https://www.jstor.org/stable/3503895',
579 => 'https://www.jstor.org/stable/1381085',
580 => 'https://www.jstor.org/stable/108539',
581 => 'https://www.sciencedaily.com/releases/2007/01/070118161402.htm',
582 => 'http://papuaweb.anu.edu.au/dlib/jr/ngtebd/03.pdf',
583 => 'https://www.nature.com/articles/news.2011.376',
584 => 'http://eprints.qut.edu.au/79775/1/79775.pdf',
585 => 'http://news.nationalgeographic.com/2015/08/150829-animals-science-sloths-bats-health-biology/',
586 => 'http://apps.dtic.mil/dtic/tr/fulltext/u2/a164098.pdf',
587 => 'https://tree.opentreeoflife.org/taxonomy/browse?id=574724',
588 => 'https://paleobiodb.org/classic/basicTaxonInfo?taxon_no=40622',
589 => 'https://doi.org/10.1371%2Fjournal.pone.0166024',
590 => 'https://doi.org/10.11609%2Fjott.5893.12.8.15945-15946',
591 => 'https://pubmed.ncbi.nlm.nih.gov/27824953'
] |
Parsed HTML source of the new revision (new_html ) | '<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>'<i> <b>Bold text'</b></i>
BAT
</p></div>' |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | false |
Unix timestamp of change (timestamp ) | '1714400630' |